DOI QR코드

DOI QR Code

Fused Filament Fabrication of Poly (Lactic Acid) Reinforced with Silane-Treated Cellulose Fiber for 3D Printing

  • Young-Rok SEO (Department of Forest Products and Biotechnology, Kookmin University) ;
  • Birm-June KIM (Department of Forest Products and Biotechnology, Kookmin University)
  • Received : 2024.01.27
  • Accepted : 2024.05.02
  • Published : 2024.05.25

Abstract

Various polylactic acid (PLA) blends were reinforced with untreated or silane-treated micro-sized cellulose fiber (MCF), successfully prepared as 3D printing filaments and then printed using a fused filament fabrication (FFF) 3D printer. In this study, we focused on developing 3D-printed MCF/PLA composites through silane treatment of MCF and investigating the effect of silane treatment on the various properties of FFF 3D-printed composites. Fourier transform infrared spectra confirmed the increase in hydrophobic properties of silane-treated MCF by showing the new absorption peaks at 1,100 cm-1, 1,030 cm-1, and 815 cm-1 representing C-NH2, Si-O-Si, and Si-CH2 bonds, respectively. In scanning electron microscope images of silane-treated MCF filled PLA composites, the improved interfacial adhesion between MCF and PLA matrix was observed. The mechanical properties of the 3D-printed MCF/PLA composites with silane-treated MCF were improved compared to those of the 3D-printed MCF/PLA composites with untreated MCF. In particular, the highest tensile and flexural modulus values were observed for S-MCF10 (5,784.77 MPa) and S-MCF5 (2,441.67 MPa), respectively. The thermal stability of silane-treated MCF was enhanced by delaying the initial thermal decomposition temperature compared to untreated MCF. The thermal decomposition temperature difference at T95 was around 26℃. This study suggests that the effect of silane treatment on the 3D-printed MCF/PLA composites is effective and promising.

Keywords

Acknowledgement

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2022R1F1A1076532) and 'R&D Program for Forest Science Technology (Project No. 2023473E10-2325-EE02)' provided by Korea Forest Service (Korea Forestry Promotion Institute).

References

  1. Agrawal, R., Saxena, N.S., Sharma, K.B., Thomas, S., Sreekala, M.S. 2000. Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Materials Science and Engineering: A 277(1-2): 77-82.
  2. Bae, S., Seo, Y., Kim, B., Lee, M. 2021. Effects of wood flour and MA-EPDM on the properties of fused deposition modeling 3D-printed poly lactic acid composites. BioResources 16(4): 7122-7138.
  3. Bae, S.U., Kim, B.J. 2021. Effects of cellulose nanocrystal and inorganic nanofillers on the morphological and mechanical properties of digital light processing (DLP) 3D-printed photopolymer composites. Applied Sciences 11(15): 6835.
  4. Bose, S., Mahanwar, P.A. 2006. Effect of titanate coupling agent on the mechanical, thermal, dielectric, rheological, and morphological properties of filled nylon 6. Journal of Applied Polymer Science 99(1): 266-272.
  5. Chacon, J.M., Caminero, M.A., Garcia-Plaza, E., Nunez, P.J. 2017. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Materials & Design 124: 143-157.
  6. Chun, K.S., Husseinsyah, S., Osman, H. 2012. Mechanical and thermal properties of coconut shell powder filled polylactic acid biocomposites: Effects of the filler content and silane coupling agent. Journal of Polymer Research 19(5): 9859.
  7. Demjen, Z., Pukanszky, B., Nagy, J. Jr. 1999. Possible coupling reactions of functional silanes and polypropylene. Polymer 40(7): 1763-1773.
  8. Dickson, A.N., Abourayana, H.M., Dowling, D.P. 2020. 3D printing of fibre-reinforced thermoplastic composites using fused filament fabrication: A review. Polymer 12(10): 2188.
  9. Frone, A.N., Berlioz, S., Chailan, J.F., Panaitescu, D.M. 2013. Morphology and thermal properties of PLA- cellulose nanofibers composites. Carbohydrate Polymers 91(1): 377-384.
  10. Frone, A.N., Berlioz, S., Chailan, J.F., Panaitescu, D.M., Donescu, D. 2011. Cellulose fiber-reinforced polylactic acid. Polymer Composites 32(6): 976-985.
  11. George, J., Sreekala, M.S., Thomas, S. 2001. A review on interface modification and characterization of natural fiber reinforced plastic composites. Polymer Engineering & Science 41(9): 1471-1485.
  12. Gwon, J.G., Lee, S.Y., Chun, S.J., Doh, G.H., Kim, J.H. 2010. Effects of chemical treatments of hybrid fillers on the physical and thermal properties of wood plastic composites. Composites Part A: Applied Science and Manufacturing 41(10): 1491-1497.
  13. Huda, M.S., Drzal, L.T., Mohanty, A.K., Misra, M. 2008. Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Composites Science and Technology 68(2): 424-432.
  14. Ifuku, S., Yano, H. 2015. Effect of a silane coupling agent on the mechanical properties of a microfibrillated cellulose composite. International Journal of Biological Macromolecules 74: 428-432.
  15. Jain, B., Mallya, R., Nayak, S.Y., Heckadka, S.S., Prabhu, S., Mahesha, G.T., Sancheti, G. 2022. Influence of alkali and silane treatment on the physico-mechanical properties of Grewia serrulata fibres. Journal of the Korean Wood Science and Technology 50(5): 325-337.
  16. Jamshidian, M., Tehrany, E.A., Imran, M., Jacquot, M., Desobry, S. 2010. Poly-lactic acid: Production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety 9(5): 552-571.
  17. Kim, B.J., Yao, F., Han, G., Wu, Q. 2012. Performance of bamboo plastic composites with hybrid bamboo and precipitated calcium carbonate fillers. Polymer Composites 33(1): 68-78.
  18. Kim, S.H., Kim, E.S., Choi, K., Cho, J.K., Sun, H., Yoo, J.W., Park, I.K., Lee, Y., Choi, H.R., Kim, T., Suhr, J., Yun, J.H., Choi, H.J., Nam, J.D. 2019. Rheological and mechanical properties of polypropylene composites containing microfibrillated cellulose (MFC) with improved compatibility through surface silylation. Cellulose 26(2): 1085-1097.
  19. Koohestani, B., Ganetri, I., Yilmaz, E. 2017. Effects of silane modified minerals on mechanical, microstructural, thermal, and rheological properties of wood plastic composites. Composites Part B: Engineering 111: 103-111.
  20. Krishnamachari, P., Zhang, J., Lou, J., Yan, J., Uitenham, L. 2009. Biodegradable poly(lactic acid)/clay nanocomposites by melt intercalation: A study of morphological, thermal, and mechanical properties. International Journal of Polymer Analysis and Characterization 14(4): 336-350.
  21. Lai, S.M., Yeh, F.C., Wang, Y., Chan, H.C., Shen, H.F. 2003. Comparative study of maleated polyolefins as compatibilizers for polyethylene/wood flour composites. Journal of Applied Polymer Science 87(3): 487-496.
  22. Lee, C.H., Padzil, F.N.B.M., Lee, S.H., Ainun, Z.M.A., Abdullah, L.C. 2021. Potential for natural fiber reinforcement in PLA polymer filaments for fused deposition modeling (FDM) additive manufacturing: A review. Polymers 13(9): 1407.
  23. Liu, H., Zhang, J. 2011. Research progress in toughening modification of poly(lactic acid). Journal of Polymer Science Part B: Polymer Physics 49(15): 1051-1083.
  24. Liu, X., Dever, M., Fair, N., Benson, R.S. 1997. Thermal and mechanical properties of poly(lactic acid) and poly(ethylene/butylene succinate) blends. Journal of Environmental Polymer Degradation 5(4): 225-235.
  25. Lu, J., Askeland, P., Drzal, L.T. 2008. Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49(5): 1285-1296.
  26. Lu, J., Drzal, L.T. 2010. Microfibrillated cellulose/cellulose acetate composites: Effect of surface treatment. Journal of Polymer Science Part B: Polymer Physics 48(2): 153-161.
  27. Mahendiran, B., Muthusamy, S., Janani, G., Mandal, B.B., Rajendran, S., Krishnakumar, G.S. 2022. Surface modification of decellularized natural cellulose scaffolds with organosilanes for bone tissue regeneration. ACS Biomaterials Science & Engineering 8(5): 2000-2015.
  28. Mathialagan, M., Ismail, H. 2012. Optimization and effect of 3-aminopropyltriethoxysilane content on the properties of bentonite-filled ethylene propylene diene monomer composites. Polymer Composites 33(11): 1993-2000.
  29. Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J. 2011. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews 40(7): 3941-3994.
  30. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Q., Hui, D. 2018. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering 143: 172-196.
  31. Pang, A.L., Ismail, H. 2013. Tensile properties, water uptake, and thermal properties of polypropylene/waste pulverized tire/kenaf (PP/WPT/KNF) composites. BioResources 8(1): 806-817.
  32. Pawar, P.M.A., Koutaniemi, S., Tenkanen, M., Mellerowicz, E.J. 2013. Acetylation of woody lignocellulose: Significance and regulation. Frontiers in Plant Science 4: 118.
  33. Qian, S.P., Sheng, K. 2017. PLA toughened by bamboo cellulose nanowhiskers: Role of silane compatibilization on the PLA bionanocomposite properties. Composites Science and Technology 148: 59-69.
  34. Rahmatabadi, D., Aberoumand, M., Soltanmohammadi, K., Soleyman, E., Ghasemi, I., Baniassadi, M., Abrinia, K., Bodaghi, M., Baghani, M. 2023a. Toughening PVC with biocompatible PCL softeners for supreme mechanical properties, morphology, shape memory effects, and FFF printability. Macromolecular Materials and Engineering 308(10): 2300114.
  35. Rahmatabadi, D., Soltanmohammadi, K., Pahlavani, M., Aberoumand, M., Soleyman, E., Ghasemi, I., Baniassadi, M., Abrinia, K., Bodaghi, M., Baghani, M. 2023b. Shape memory performance assessment of FDM 3D printed PLA-TPU composites by Box-Behnken response surface methodology. The International Journal of Advanced Manufacturing Technology 127(1/2): 935-950.
  36. Shin, Y.J., Yun, H.J., Lee, E.J., Chung, W.Y. 2018. A study on the development of bamboo/PLA biocomposites for 3D printer filament. Journal of the Korean Wood Science and Technology 46(1): 107-113.
  37. Suksut, B., Deeprasertkul, C. 2011. Effect of nucleating agents on physical properties of poly(lactic acid) and its blend with natural rubber. Journal of Polymers and the Environment 19(1): 288-296.
  38. Vatani, M., Lu, Y., Engeberg, E.D., Choi, J.W. 2015. Combined 3D printing technologies and material for fabrication of tactile sensors. International Journal of Precision Engineering and Manufacturing 16(7): 1375-1383.
  39. Wang, Z., Xu, J., Lu, Y., Hu, L., Fan, Y., Ma, J., Zhou, X. 2017. Preparation of 3D printable micro/nanocellulose-polylactic acid (MNC/PLA) composite wire rods with high MNC constitution. Industrial Crops and Products 109: 889-896.
  40. Xie, Y., Hill, C.A.S., Xiao, Z., Militz, H., Mai, C. 2010. Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing 41(7): 806-819.
  41. Xu, W., Pranovich, A., Uppstu, P., Wang, X., Kronlund, D., Hemming, J., Oblom, H., Moritz, N., Preis, M., Sandler, N., Willfor, S., Xu, C. 2018. Novel biorenewable composite of wood polysaccharide and polylactic acid for three dimensional printing. Carbohydrate Polymers 187: 51-58.
  42. Zulkifli, N.I., Samat, N., Anuar, H., Zainuddin, N. 2015. Mechanical properties and failure modes of recycled polypropylene/microcrystalline cellulose composites. Materials & Design 69: 114-123.