DOI QR코드

DOI QR Code

Rain Attenuation Prediction at Different Time Percentages for Ku, K, and Ka Bands Satellite Communication Systems over Nigeria

  • Received : 2023.10.25
  • Accepted : 2024.03.04
  • Published : 2024.03.15

Abstract

This paper evaluates the influence of rainfall on propagated signal at different time exceedance percentages of an average year, over the climate zones of the country. Specifically, it demonstrates critical and non critical signal fade or signal outage time exceedance (0.001% to 1%) for Ku, K, and Ka-band systems in an average year. The study was carried out using meteorological data made available by the Nigerian Meteorological Agency (NiMet) over a period of 10 years (2009-2018). The four climate zones in the country were represented by five (5) locations; Maidugiri (warm desert climate), Sokoto (tropical dry climate), Port Harcourt (tropical monsoon climate), Abuja and Enugu (tropical savanna climate). The parameters were simulated into the International Telecommunications Union Recommended (ITU-R) models for rain attenuation over the tropics and results presented using MatLab and Origin Lab. Results of Ku band propagations showed that only locations in the tropical savanna and tropical monsoon climates experienced total signal outage for time percentage exceedance equal to or below 0.01% for both horizontal and vertical polarizations. At K band propagations, the five locations showed to have experienced signal outage at time exceedance equal to and below 0.01%, almost same was recorded for the Ka-band propagation. It was also observed that horizontal and vertical polarization of signal had slightly different rain attenuation values for the studied bands at the five locations, with horizontal polarization having higher values than vertical polarization.

Keywords

Acknowledgement

The authors are grateful to the Nigerian Meteorological Agency (NIMET) for making the rainfall and other weather data for this research available and in time.

References

  1. Abrajano GD, Rainfall attenuation in microwave mesh networks, PhD Dissertation, Nara Institute of Science and Technology (2014). 
  2. Ajayi GO, Ofoche EBC, Some tropical rainfall rate characteristics at Ile-Ife for microwave and millimeter wave application, J. Clim. Appl. Meteorol. 23, 562-567 (1984). https://doi.org/10.1175/1520-0450(1984)023<0562:STRRCA>2.0.CO;2 
  3. Chebil J, Rahman TA, Rain rate statistical conversion for the prediction of rain attenuation in Malaysia, Electron. Lett. 35, 1019-1021 (1999). https://doi.org/10.1049/el:19990685 
  4. Chen CC, Attenuation of electromagnetic radiation by haze, fog, clouds, and rain, A Report prepared for U.S. Air Force Project Rand, RAND-R-1694-PR (1975). 
  5. Choi YS, Lee JH, Kim JM, Rain attenuation measurements of the Korea sat beacon signal on 12 GHz, Proceedings of the URSI Commission F Open Symposium on Climatic Parameters in Radiowave Propagation Predictions, Ottawa, Canada, 27-29 Apr 1998. 
  6. Contreras RF, Plant WJ, Keller WC, Hayes K, Nystuen J. Effects of rain on Ku-band backscatter from the ocean, J. Geophys. Res. 108, 1-15 (2003). https://doi.org/10.1029/2001JC001255 
  7. Falodun SE, Okeke PN, Radiowave propagation measurements in Nigeria (preliminary reports). Theor. Appl. Climatol. 113, 127-135 (2013). https://doi.org/10.1007/s00704-012-0766-z 
  8. Hamad Ameen JJ, Rain effect on Ku-band satellite system, Electr. Electron. Eng. Int. J. 4, 13-23 (2015). 
  9. Igwe KC, Oyedum OD, Ajewole MO, Aibinu AM, Evaluation of some rain attenuation prediction models for satellite communication at Ku and Ka bands, J. Atmos. Sol. Terr. Phys. 188, 52-61 (2019). https://doi.org/10.1016/j.jastp.2019.03.005 
  10. Ippolito LJ, Radiowave Propagation in Satellite Communications (Van Nostrand Reinhold Company, New York, 1986). 
  11. ITU-R Recommendation P.530-14, Propagation Data and Prediction Methods required for the Design of Terrestrial Line-of-sight Systems (International Telecommunication Union, Geneva, Switzerland, 2012). 
  12. Karmakar PK, Sengupta L, Maiti M, Angelis CF, Some of the atmospheric influences on microwave propagation through atmosphere, Am. J. Sci. Ind. Res. 1, 350-358 (2010). https://doi.org/10.5251/ajsir.2010.1.2.350.358 
  13. Kestwal MC, Joshi S, Garia LS, Prediction of rain attenuation and impact of rain in wave propagation at microwave frequency for tropical region (Uttarakhand, India), Int. J. Microw. Sci. Technol. 2014, 1-7 (2014). https://doi.org/10.1155/2014/958498 
  14. Koppen W, Klassification der klimate nach temperatur, niederschlag und jahreslauf, Petermanns Geogr. Mitt. 64, 193-203 (1918). 
  15. Maki M, Keenan TD, Sasaki Y, Nakamura K, Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia, J. Appl. Meterol. Climatol. 40, 1393-1412 (2001). https://doi.org/10.1175/1520-0450(2001)040<1393:COTRSD>2.0.CO;2 
  16. Malinga SJ, Owolawi PS, Afullo TJO, Estimation of rain attenuation at C, Ka, Ku and V bands for satellite links in South Africa, PIERS Proceedings, Taipei, Taiwan, 25-28 Mar 2013. 
  17. Mandeep JS, Ng YY, Satellite beacon experiment for studying atmospheric dynamics, J. Infrared Millim. Terrahertz Waves. 31, 988-994 (2010). https://doi.org/10.1007/s10762-010-9658-4 
  18. Moupfouma F, Improvement of a rain attenuation prediction for terrestrial microwave links, IEEE Trans. Antennas Propag. 32, 1368-1372 (1984). https://doi.org/10.1109/TAP.1984.1143248 
  19. Moupfouma F, Electromagnetic waves attenuation due to rain: a prediction model for terrestrial or L.O.S SHF and EHF radio communication links, J. Infrared Millim. Terahertz Waves. 30, 622-632 (2009). https://doi.org/10.1007/s10762-009-9481-y 
  20. Oh C, Choi SH, Chang DI, Oh D, Analysis of the rain fading channel and the system applying MIMO, Proceeding of the 2006 International Symposium on Communications and Information Technologies, Bangkok, Thailand, 18-20 Oct 2006. 
  21. Ojo JS, Olurotimi EO, Tropical rainfall structure characterization over two stations in Southwestern Nigeria for radiowave propagation purposes, J. Emerg. Trends Eng. Appl. Sci. 5, 116-122 (2014). 
  22. Ojo O, The Climates of West Africa (Heinemann, London, 1977). 
  23. Olabisi O, Oladeji EA, Effects of rain on vertical and horizontal polarized Ku-band radio propagation in tropical region, Int. J. Comput. Sci. Trends Technol. 6, 1-5 (2018). 
  24. Orji PO, Chiemeka IU, Measurements and analyses of nitrogen dioxide concentration at a quarry site in Uturu, Abia State, Publ. Astron. Soc. Nigeria 1, 19-24 (2016). 
  25. Panagopoulos AD, Arapoglou PDM, Cottis PG, Satellite communications at Ku, Ka, and V bands: propagation impairments and mitigation techniques, IEEE Commun. Surv. Tutor. 6, 2-14 (2004). https://doi.org/10.1109/COMST.2004.5342290 
  26. Panchal P, Joshi R, Performance analysis and simulation of rain attenuation models at 12-40 GHz band for an Earth space path over Indian cities, Procedia Comput. Sci. 79, 801-808 (2016). https://doi.org/10.1016/j.procs.2016.03.110 
  27. Singliar R, Heder B, Csurgai L, Fiebig UC, Fontan FP, et al., Comparison of rain attenuation models of satellite communication channels based on measured point rain intensity, Proceeding of the International Conference on Telecommunications and Computer Networks (IADAT), San Sebastian, Spain, 1-3 Dec 2004.