• Title/Summary/Keyword: time exceedance

Search Result 48, Processing Time 0.027 seconds

Rain Attenuation Prediction at Different Time Percentages for Ku, K, and Ka Bands Satellite Communication Systems over Nigeria

  • Orji Prince Orji;Obiegbuna Dominic Chukwuebuka;Okoro Eucharia Chidinma;Ugonabo Obiageli Josephine;Okezuonu Patrick Chinedu;Iyida Evaristus Uzochukwu;Ugwu Chukwuebuka Jude;Menteso Firew Meka;Ikechukwu Ugochukwu Chiemeka
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.25-33
    • /
    • 2024
  • This paper evaluates the influence of rainfall on propagated signal at different time exceedance percentages of an average year, over the climate zones of the country. Specifically, it demonstrates critical and non critical signal fade or signal outage time exceedance (0.001% to 1%) for Ku, K, and Ka-band systems in an average year. The study was carried out using meteorological data made available by the Nigerian Meteorological Agency (NiMet) over a period of 10 years (2009-2018). The four climate zones in the country were represented by five (5) locations; Maidugiri (warm desert climate), Sokoto (tropical dry climate), Port Harcourt (tropical monsoon climate), Abuja and Enugu (tropical savanna climate). The parameters were simulated into the International Telecommunications Union Recommended (ITU-R) models for rain attenuation over the tropics and results presented using MatLab and Origin Lab. Results of Ku band propagations showed that only locations in the tropical savanna and tropical monsoon climates experienced total signal outage for time percentage exceedance equal to or below 0.01% for both horizontal and vertical polarizations. At K band propagations, the five locations showed to have experienced signal outage at time exceedance equal to and below 0.01%, almost same was recorded for the Ka-band propagation. It was also observed that horizontal and vertical polarization of signal had slightly different rain attenuation values for the studied bands at the five locations, with horizontal polarization having higher values than vertical polarization.

Development of Probabilistic-Fuzzy Model for Seismic Hazard Analysis (지진예측을 위한 확률론적퍼지모형의 개발)

  • 홍갑표
    • Computational Structural Engineering
    • /
    • v.4 no.3
    • /
    • pp.107-115
    • /
    • 1991
  • A probabilistic-Fuzzy model for seismic hazard analysis is developed. The proposed model is able to reproduce both the randomness and the imprecision in conjunction with earthquake occurrences. Results-of this research are (a) membership functions of both peak ground accelerations associated with a given probability of exceedance and probabilities of exceedance associated with a given peak ground acceleration, and (b) characteristic values of membership functions at each location of interest. The proposed probabilistic-fuzzy model for assessment of seismic hazard is successfully applied to the Wasatch Front Range in Utah in order to obtain the seismic maps for different annual probabilities of exceedance, different peak ground accelerations, and different time periods.

  • PDF

A Study on the Changes of Return Period Considering Nonstationarity of Rainfall Data (강우자료의 비정상성을 고려한 재현기간 변화에 관한 연구)

  • Shin, Hongjoon;Ahn, Hyunjun;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.447-457
    • /
    • 2014
  • This research focuses on the changes of return period for nonstationary rainfall data in which exceedance or nonexceedance probability varies depending on time. We examined two definitions of return period under nonstationarity and also performed nonstationary frequency analysis using the nonstationary Gumbel model to investigate variations of return period in Korea. Seogwipo, Inje, Jecheon, Gumi, Mungyeong, and Geochang were selected as subject sites of application. These sites have a trend in rainfall data as well as having more than 30 years data. As the results of application, the return periods considering nonstationarity are different with those considering stationarity. The differences of return periods between nonstationarity and stationarity increase as growing return period increases. In addition, the return period using the expected waiting time method shows lower value than that using the expected number of event method.

Threshold Modelling of Spatial Extremes - Summer Rainfall of Korea (공간 극단값의 분계점 모형 사례 연구 - 한국 여름철 강수량)

  • Hwang, Seungyong;Choi, Hyemi
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.4
    • /
    • pp.655-665
    • /
    • 2014
  • An adequate understanding and response to natural hazards such as heat wave, heavy rainfall and severe drought is required. We apply extreme value theory to analyze these abnormal weather phenomena. It is common for extremes in climatic data to be nonstationary in space and time. In this paper, we analyze summer rainfall data in South Korea using exceedance values over thresholds estimated by quantile regression with location information and time as covariates. We group weather stations in South Korea into 5 clusters and t extreme value models to threshold exceedances for each cluster under the assumption of independence in space and time as well as estimates of uncertainty for spatial dependence as proposed in Northrop and Jonathan (2011).

Seismic microzonation of Kolkata

  • Shiuly, Amit;Sahu, R.B.;Mandal, Saroj
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.125-144
    • /
    • 2015
  • This paper presents the probabilistic seismic microzonation of densely populated Kolkata city, situated on the world's largest delta island with very soft alluvial soil deposit. At first probabilistic seismic hazard analysis of Kolkata city was carried out at bedrock level and then ground motion amplification due to sedimentary deposit was computed using one dimensional (1D) wave propagation analysis SHAKE2000. Different maps like fundamental frequency, amplification at fundamental frequency, peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), maximum response spectral acceleration at different time period bands are developed for variety of end users, structural and geotechnical engineers, land use planners, emergency managers and awareness of general public. The probabilistically predicted PGA at bedrock level is 0.12 g for 50% exceedance in 50 years and maximum PGA at surface level it varies from 0.095 g to 0.18 g for same probability of exceedance. The scenario of simulated ground motion revealed that Kolkata city is very much prone to damage during earthquake.

Stochastic River Water Quality Management by Dynamic Programming (동적계획법을 이용한 추계학적 하천수질관리)

  • Cho, Jae-Heon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.87-95
    • /
    • 1997
  • A river water quality management model was made by Dynamic programming. This model optimizes the wastewater treatment cost of the application area, and computed water quality with it must meet the water quality standard. And this model takes into consideration tributary input, wastewater treatment plant effluent, withdrawls for several purposes. Modified Streeter-Phelps equation was used to calculate BOD and DO. Optimization problem was solved with particular exceedance probability flow, and the water quality of each point was calculated with the decided treatment efficiencies. At that time, the probability satisfying the water quality standard of constraints to the exceedance probability of the flow. The developed model was applied to the lower part of the Han-River. The reliability to meet the water quality standard is 70 % when 4 wastewater treatment plants of Seoul City are operated by activated sludge system at autumn of the year 2001. Treatment cost of this case is 121.288 billion won per year.

  • PDF

Characteristics of Air Pollutant Concentrations Near Major Roadways in Daegu (대구지역 주요 도로변 대기오염물질의 농도 특성)

  • Jo, Wan-Kuen;Choi, Sung-Rak
    • Journal of Environmental Science International
    • /
    • v.15 no.8
    • /
    • pp.737-744
    • /
    • 2006
  • Present study was designed to characterize the concentrations of major roadside air pollutants in Daegu and to compare with those of Seoul and Busan. Evaluated were the exceedance frequence of mean concentrations of target compounds(CO, NO$_2$, O$_3$, PM$_{10}$, SO$_2$) and the relationship for time variation. Two air pollution monitoring stations(one roadside station and one residential station) in Daegu were selected for this study. In addition, one roadside monitoring station from each of Seoul and Busan was chosen for the comparison of Daegu monitoring stations. The data analyzed in the current study were collected from 1998 to 2000 by Daegu Regional Environmental Management Office. The roadside concentrations of NO2 and PM to and the exceedance frequency of ambient air standard levels in Daegu were higher than those of Seoul and Busan. Except 03, the roadside concentrations of all target compounds showed following three distinguished patterns; first, possibly due to increased traffic density, the concentrations increased from 0500 to 0900(LST), second, the concentrations decreased from 0900 to 1700(LST) possibly due to the increased wind velocity and decreased traffic density, and finally, increased traffic density, the concentrations increased again from 1700 to 2100(LST). An implication was that major air pollution sources shifted from residential area to road-area during rush hours.

Markov-based time-varying risk assessment of the subway station considering mainshock and aftershock hazards

  • Wei Che;Pengfei Chang;Mingyi Sun
    • Earthquakes and Structures
    • /
    • v.24 no.4
    • /
    • pp.303-316
    • /
    • 2023
  • Rapid post-earthquake damage estimation of subway stations is particularly necessary to improve short-term crisis management and safety measures of urban subway systems after a destructive earthquake. The conventional Performance-Based Earthquake Engineering (PBEE) framework with constant earthquake occurrence rate is invalid to estimate the aftershock risk because of the time-varying rate of aftershocks and the uncertainty of mainshock-damaged state before the occurrence of aftershocks. This study presents a time-varying probabilistic seismic risk assessment framework for underground structures considering mainshock and aftershock hazards. A discrete non-omogeneous Markov process is adopted to quantify the time-varying nature of aftershock hazard and the uncertainties of structural damage states following mainshock. The time-varying seismic risk of a typical rectangular frame subway station is assessed under mainshock-only (MS) hazard and mainshock-aftershock (MSAS) hazard. The results show that the probabilities of exceeding same limit states over the service life under MSAS hazard are larger than the values under MS hazard. For the same probability of exceedance, the higher response demands are found when aftershocks are considered. As the severity of damage state for the station structure increases, the difference of the probability of exceedance increases when aftershocks are considered. PSDR=1.0% is used as the collapse prevention performance criteria for the subway station is reasonable for both the MS hazard and MSAS hazard. However, if the effect of aftershock hazard is neglected, it can significantly underestimate the response demands and the uncertainties of potential damage states for the subway station over the service life.

Temperature effect analysis of a long-span cable-stayed bridge based on extreme strain estimation

  • Yang, Xia;Zhang, Jing;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.11-22
    • /
    • 2017
  • The long-term effect of ambient temperature on bridge strain is an important and challenging problem. To investigate this issue, one year data of strain and ambient temperature of a long-span cable-stayed bridge is studied in this paper. The measured strain-time history is decomposed into two parts to obtain the strains due to vehicle load and temperature alone. A linear regression model between the temperature and the strain due to temperature is established. It is shown that for every $1^{\circ}C$ increase in temperature, the stress is increased by 0.148 MPa. Furthmore, the extreme value distributions of the strains due to vehicle load, temperature and the combination effect of them during the remaining service period are estimated by the average conditional exceedance rate approach. This approach avoids the problem of declustering of data to ensure independence. The estimated results demonstrate that the 95% quantile of the extreme strain distribution due to temperature is up to $1.488{\times}10^{-4}$ which is 2.38 times larger than that due to vehicle load. The study also indicates that the estimated extreme strain can reflect the long-term effect of temperature on bridge strain state, which has reference significance for the reliability estimation and safety assessment.

Sewerage rehabilitation strategy based on sewer capacity evaluation (하수관거 통수능 검토를 통한 관거 개선방안 연구)

  • Ryu, Jaena;Oh, Jeill;Oh, Sukho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2009
  • Sewers are important national infrastructure and play an essential part by handling both wastewater and stormwater to minimise problems caused to human life and the environment. However, they can cause urban flooding when rainfall exceeds the system capacity. Sewer flooding is an unwelcome and increasingly frequent problem in many urban areas, and its frequency will increase over time with urbanisation and climate change. Under current standards, sewers are designed to drain stormwater generated by up to 10 year return period storms, but data suggests that many in practice have been experienced flooding with exceeding system capacity under increased storm events. A large number of studies has considered upgrading or increasing the design standard but there are still lack of information to propose a suitable return period with the corresponding system quantity to achieve. A methodology is required to suggest a proper level of standard within a suitable sewerage rehabilitation planning that can avoid the exceedance problem. This study aimed to develop a methodology to support effective sewer rehabilitation that could prevent urban flooding mainly resulted from the exceedance of existing storm sewer system capacity. Selected sewerage rehabilitation methods were examined under different storm return periods and compared to achieve the best value for money.