DOI QR코드

DOI QR Code

Classification of Subgroups of Solar and Heliospheric Observatory (SOHO) Sungrazing Kreutz Comet Group by the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Algorithm

  • Ulkar Karimova (Department of Astronomy and Space Science, Chungnam National University) ;
  • Yu Yi (Department of Astronomy and Space Science, Chungnam National University)
  • Received : 2024.02.26
  • Accepted : 2024.03.04
  • Published : 2024.03.15

Abstract

Sungrazing comets, known for their proximity to the Sun, are traditionally classified into broad groups like Kreutz, Marsden, Kracht, Meyer, and non-group comets. While existing methods successfully categorize these groups, finer distinctions within the Kreutz subgroup remain a challenge. In this study, we introduce an automated classification technique using the densitybased spatial clustering of applications with noise (DBSCAN) algorithm to categorize sungrazing comets. Our method extends traditional classifications by finely categorizing the Kreutz subgroup into four distinct subgroups based on a comprehensive range of orbital parameters, providing critical insights into the origins and dynamics of these comets. Corroborative analyses validate the accuracy and effectiveness of our method, offering a more efficient framework for understanding the categorization of sungrazing comets.

Keywords

Acknowledgement

This work was supported by a research fund of Chungnam National University. The SOHO/LASCO data used here are produced by a consortium of the Naval Research Laboratory (Southwest, Washington DC, USA), Max-Planck-Institut for Sonnensystemforschung (MPS) (Gottingen, Germany), Laboratoire d'Astrophysique Marseille (LAM) (Marseille, France), and the University of Birmingham (UK). SOHO is a project of international cooperation between ESA and NASA.

References

  1. Batygin K, Adams FC, Brown ME, Becker JC, The planet nine hypothesis, Phys. Rep. 805, 1-53 (2019). https://doi.org/10.1016/j.physrep.2019.01.009
  2. Biermann L, Huebner WF, Lust R, Aphelion clustering of "new" comets: Star tracks through Oort's cloud, Proc. Natl. Acad. Sci. USA. 80, 5151-5155 (1983). https://doi.org/10.1073/pnas.80.16.5151
  3. Brown JC, Potts HE, Porter LJ, Le Chat G, Mass loss, destruction and detection of sun-grazing and -impacting cometary nuclei, Astron. Astrophys. 535, A71 (2011). https://doi.org/10.1051/0004-6361/201015660
  4. Bzowski M, Krolikowska M, Sungrazing comets as source of pickup ions at Earth orbit and Ulysses, Proceedings of the Solar Wind 11 / SOHO 16, Connecting Sun and Heliosphere Conference (ESA SP-592), Whistler, Canada, 12-17 Jun 2005.
  5. England KJ, Early sungrazer comets, J. Br. Astron. Assoc. 112, 13-28 (2002).
  6. Fouchard M, Higuchi A, Ito T, What long-period comets tell us about the Oort Cloud, Astron. Astrophys. 676, A104 (2023). https://doi.org/10.1051/0004-6361/202243728
  7. Hasegawa I, Nakano S, Possible Kreutz sungrazing comets found in historical records, Publ. Astron. Soc. Jpn. 53, 931-950 (2001). https://doi.org/10.1093/pasj/53.5.931
  8. Hou CP, He JS, Zhang L, Wang Y, Duan D, Dynamics of the charged particles released from a sun-grazing comet in the solar corona, Earth Planet. Phys. 5, 232-238 (2021). https://doi.org/10.26464/epp2021023
  9. Iseli M, Kuppers M, Benz W, Bochsler P, Sungrazing comets: properties of nuclei and in situ detectability of cometary ions at 1 AU, Icarus. 155, 350-364 (2002). https://doi.org/10.1006/icar.2001.6722
  10. Jia YD, Russell CT, Liu W, Shou YS, Multi-fluid model of a sun-grazing comet in the rapidly ionizing, magnetized low corona, Astrophys. J. 796, 42 (2014). https://doi.org/10.1088/0004-637X/796/1/42
  11. Jones GH, Knight MM, Battams K, Boice DC, Brown J, et al., The science of sungrazers, sunskirters, and other near-Sun comets, Space Sci. Rev. 214, 20 (2018). https://doi.org/ 10.1007/s11214-017-0446-5
  12. Karimova U, Yi Y, SOHO Sungrazing comet groups classified by the scatterplot matrix, J. Korean Phys. Soc. 83, 733-740 (2023). https://doi.org/10.1007/s40042-023-00935-2
  13. Knight MM, A'Hearn MF, Biesecker DA, Faury G, Hamilton DP, et al., Photometric study of the Kreutz comets observed by SOHO from 1996 to 2005, Astron. J. 139, 926 (2010). https://doi.org/10.1088/0004-6256/139/3/926
  14. Lee SE, Yi Y, Kim YH, Brandt JC, Distribution of perihelia for SOHO sungrazing comets and the prospective groups, J. Astron. Space Sci. 24, 227-234 (2007). https://doi.org/10.5140/JASS.2007.24.3.227
  15. Marsden BG, Sungrazing comets, Annu. Rev. Astron. Astrophys. 43, 75-102 (2005). https://doi.org/10.1146/annurev.astro.43.072103.150554
  16. Marsden BG, The sungrazing comet group, Astron. J. 72, 1170 (1967). https://doi.org/10.1086/110396
  17. Ohtsuka K, Nakano S, Yoshikawa M, On the association among periodic comet 96P/Machholz, Arietids, the Marsden comet group, and the Kracht comet group, Publ. Astron. Soc. Jpn. 55, 321-324 (2003). https://doi.org/10.1093/pasj/55.1.321
  18. Rasca AP, Oran R, Horanyi M, Mass loading of the solar wind by a sungrazing comet, Geophys. Res. Lett. 41, 5376-5381 (2014). https://doi.org/10.1002/2014GL060990
  19. Rickman H, The Oort Cloud and long-period comets, Meteorit. Planet. Sci. 49, 8-20 (2014). https://doi.org/10.1111/maps. 12080
  20. Sekanina Z, Kracht R, Population of SOHO/STEREO Kreutz sungrazers and the arrival of comet C/2011 W3 (Lovejoy), Astrophys. J. 778, 24 (2013). https://doi.org/10.1088/0004-637X/778/1/24
  21. SOHO, SOHO observes 200TH comet (2020) [Internet], viewed 2023 Jul 20, available from: https://soho.nascom.nasa.gov/hotshots/2000_08_21/
  22. Vokrouhlicky D, Nesvorny D, Dones L, Origin and evolution of long-period comets, Astron. J. 157, 181 (2019). https://doi.org/10.3847/1538-3881/ab13aa
  23. Whipple FL, Oort-Cloud and Kuiper-Belt comets, Planet. Space Sci. 48, 1011-1019 (2000). https://doi.org/10.1016/S0032-0633(00)00070-2
  24. Whitmire D, Periodic mass extinctions and the Planet X model reconsidered, Mon. Not. R. Astron. Soc. Lett. 455, L114-L117 (2016). https://doi.org/10.1093/mnrasl/slv157