• Title/Summary/Keyword: Fuel behavior modelling

Search Result 15, Processing Time 0.017 seconds

Modelling of the fire impact on CONSTOR RBMK-1500 cask thermal behavior in the open interim storage site

  • Robertas Poskas;Kestutis Rackaitis;Povilas Poskas;Hussam Jouhara
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2604-2612
    • /
    • 2023
  • Spent nuclear fuel and long-lived radioactive waste must be carefully handled before disposing them off to a geological repository. After the pre-storage period in water pools, spent nuclear fuel is stored in casks, which are widely used for interim storage. Interim storage in casks is very important part in the whole cycle of nuclear energy generation. This paper presents the results of the numerical study that was performed to evaluate the thermal behavior of a metal-concrete CONSTOR RBMK-1500 cask loaded with spent nuclear fuel and placed in an open type interim storage facility which is under fire conditions (steady-state, fire, post-fire). The modelling was performed using the ANSYS Fluent code. Also, a local sensitivity analysis of thermal parameters on temperature variation was performed. The analysis demonstrated that the maximum increase in the fuel load temperatures is about 10 ℃ and 8 ℃ for 30 min 800 ℃ and 60 min 600 ℃ fires respectively. Therefore, during the fire and the post-fire periods, the fuel load temperatures did not exceed the 300 ℃ limiting temperature set for an RBMK SNF cladding for long-term storage. This ensures that fire accident does not cause overheating of fuel rods in a cask.

Analysis of the thermal-mechanical behavior of SFR fuel pins during fast unprotected transient overpower accidents using the GERMINAL fuel performance code

  • Vincent Dupont;Victor Blanc;Thierry Beck;Marc Lainet;Pierre Sciora
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.973-979
    • /
    • 2024
  • In the framework of the Generation IV research and development project, in which the French Commission of Alternative and Atomic Energies (CEA) is involved, a main objective for the design of Sodium-cooled Fast Reactor (SFR) is to meet the safety goals for severe accidents. Among the severe ones, the Unprotected Transient OverPower (UTOP) accidents can lead very quickly to a global melting of the core. UTOP accidents can be considered either as slow during a Control Rod Withdrawal (CRW) or as fast. The paper focuses on fast UTOP accidents, which occur in a few milliseconds, and three different scenarios are considered: rupture of the core support plate, uncontrolled passage of a gas bubble inside the core and core mechanical distortion such as a core flowering/compaction during an earthquake. Several levels and rates of reactivity insertions are also considered and the thermal-mechanical behavior of an ASTRID fuel pin from the ASTRID CFV core is simulated with the GERMINAL code. Two types of fuel pins are simulated, inner and outer core pins, and three different burn-up are considered. Moreover, the feedback from the CABRI programs on these type of transients is used in order to evaluate the failure mechanism in terms of kinetics of energy injection and fuel melting. The CABRI experiments complete the analysis made with GERMINAL calculations and have shown that three dominant mechanisms can be considered as responsible for pin failure or onset of pin degradation during ULOF/UTOP accident: molten cavity pressure loading, fuel-cladding mechanical interaction (FCMI) and fuel break-up. The study is one of the first step in fast UTOP accidents modelling with GERMINAL and it has shown that the code can already succeed in modelling these type of scenarios up to the sodium boiling point. The modeling of the radial propagation of the melting front, validated by comparison with CABRI tests, is already very efficient.

Development and testing of the hydrogen behavior tool for Falcon - HYPE

  • Piotr Konarski;Cedric Cozzo;Grigori Khvostov;Hakim Ferroukhi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.728-744
    • /
    • 2024
  • The presence of hydrogen absorbed by zirconium-based cladding materials during reactor operation can trigger degradation mechanisms and endanger the rod integrity. Ensuring the durability of the rods in extended time-frames like dry storage requires anticipating hydrogen behavior using numerical modeling. In this context, the present paper describes a hydrogen post-processing tool for Falcon - HYPE, a PSI's in-house tool able to calculate hydrogen uptake, transport, thermochemistry, reorientation of hydrides and hydrogen-related failure criteria. The tool extracts all necessary data from a Falcon output file; therefore, it can be considered loosely coupled to Falcon. HYPE has been successfully validated against experimental data and applied to reactor operation and interim storage scenarios to present its capabilities.

Development of Structural Analysis Modeling for KALIMER Fuel Rod

  • Kang, Hee-Young;Cheol Nam;Woan Hwang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.175-180
    • /
    • 1998
  • The U-Zr metallic alloy with low swelling HT9 cladding is the candidate for the KALIMER fuel rod. The fuel rod should be able to maintain the structural integrity during its lifetime in the reactor. In a typical metallic fuel rod, load is mainly applied by internal gas pressure, and the deformation is primarily caused by creep of the cladding. The three-dimensional FEM modelling of a fuel rod is important to predict the structural behavior in concept design stage. Using the ANSYS code, the 3-D structure analyses were performed for various configuration, element and loads. It has been shown that the present analysis model properly evaluate the structural integrity of fuel rod. The present analysis results show that the fuel rod is expected to maintain its structural integrity during normal operation.

  • PDF

Effect of thermal conductivity degradation on the behavior of high burnup $UO_2$ fuel

  • Lee, Byung-Ho;Koo, Yang-Hyun;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.265-270
    • /
    • 1996
  • The temperature distribution in the pellet was obtained from beginning the general heat conduction equation. The thermal conductivity of pellet used the SIMFUEL data that made clear the effect of burnup on the thermal conductivity degradation. Since the pellet rim acts as the thermal barrier to heat flow. the pellet was subdivided into several rings in which the outer ring was adjusted to play almost the same role as the rim. The local burup in each ring except the outer ring was calculated from the power depression factor based on FASER results. whereas the rim burnup at the outer ring was achieved by the pellet averaged burnup based on the empirical relation. The rim changed to the equivalent Xe film so the predicted temperature shooed the thermal jump across the rim. The observed temperature profiles depended on linear heat generation rate. fuel burnup. and power depression factor. The thermal conductivity degradation modelling can be applied to the fuel performance code to high burnup fuel,

  • PDF

Performance of Cu-SiO2 Aerogel Catalyst in Methanol Steam Reforming: Modeling of hydrogen production using Response Surface Methodology and Artificial Neuron Networks

  • Taher Yousefi Amiri;Mahdi Maleki-Kakelar;Abbas Aghaeinejad-Meybodi
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.328-339
    • /
    • 2023
  • Methanol steam reforming (MSR) is a promising method for hydrogen supplying as a critical step in hydrogen fuel cell commercialization in mobile applications. Modelling and understanding of the reactor behavior is an attractive research field to develop an efficient reformer. Three-layer feed-forward artificial neural network (ANN) and Box-Behnken design (BBD) were used to modelling of MSR process using the Cu-SiO2 aerogel catalyst. Furthermore, impacts of the basic operational variables and their mutual interactions were studied. The results showed that the most affecting parameters were the reaction temperature (56%) and its quadratic term (20.5%). In addition, it was also found that the interaction between temperature and Steam/Methanol ratio is important on the MSR performance. These models precisely predict MSR performance and have great agreement with experimental results. However, on the basis of statistical criteria the ANN technique showed the greater modelling ability as compared with statistical BBD approach.

CANDU-6 Heat Transport System Stability Analysis With Canflex Fuel Bundle (CANFLEX 핵연료를 사용한 CANDU-6의 열수송계통 안정성 분석)

  • Shin, Jung-Cheol;Park, Ju-Hwan;Kim, Tae-Han;Suk, Ho-Chun
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.358-373
    • /
    • 1995
  • The Heat Transport system loop stability of CANDU-6 reactor using the CANFLEX fuel bundle was studied. The Thermal-hydraulic behavior of CANFLEX fuel bundle is similar to the conventional 37-element fuel bundle since the reactor power and the frictional pressure drop through the fuel channel is almost the same each other, Mounter the CANFLEX fuel bundle gives higher critical channel power and more homogeneous enthalpy distributions in the subchannels than 37-element fuel bundle. The SOPHT modelling or the CANFLEX fuel bundle and the Reactor outlet Header(ROH) interconnection line was made and the stability analysis response of Wolsong-1 reactor with CANFLEX fuel bundle was obtained. Without the ROH interconnection line the Heat Transport system loop using 43-element fuel bundle is unstable like the current 37-element fuel bundle. With the ROH interconnection line, however, the Heat Transport system is stable within $\pm$1% of nominal flow. In the Heat Transport system loop stability point of view for Wolsong-1 plant therefore, the CANFLEX fuel loading is considered to be acceptable.

  • PDF

Status of the International Cooperation Project, DECOVALEX for THM Coupling Analysis (THM 복합거동 해석을 위한 DECOVALEX 국제공동연구 현황)

  • Kwon, Sang-Ki;Cho, Won-Jin;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.323-338
    • /
    • 2007
  • For the assessment of the performance and safety of a deep underground radioactive repository system, the thermal, hydraulic, mechanical, and chemical behaviors and their coupling should be studied. In order to analyze the THMC coupling behavior more effectively, which requires complex mathematical models and modelling techniques, DECOVALEX international cooperation project was launched in 1992. Since its beginning, four major stages of the project were successfully completed and THMC modelling techniques for various conditions could be developed. In this study, the current status and major achievements from the project were reviewed and possible benefits of the participation to the project were discussed.

  • PDF

Modelling Heat Transfer Through CRUD Deposited on Cladding Tube in UNIST-DISNY Facility (UNIST-DISNY 설비 피복관에 침적된 크러드의 열전달 모델링)

  • Seon Oh YU;Ji Yong Kim;In Cheol Bang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.109-116
    • /
    • 2023
  • This study presents a CRUD modelling to simulate the thermal resistance behavior of CRUD, deposited on the surface of a cladding tube of a fuel assembly. When heat produced from fuels transfers to a coolant through a cladding tube, the CRUD acting as an additional thermal resistance is expressed as two layers, i.e., a solid oxide layer and an imaginary fluid layer, which are added to the experimental tube's heat structure of the MARS-KS input data. The validation calculation for the experiments performed in UNIST-DISNY facility showed that the center and surface temperatures of the cladding tube increased as the porosity and the steam amount inside pores of the CRUD got higher. In addition, the temperature gradient in the imaginary fluid layer was calculated to be larger than that in the solid oxide part, indicating that the steam amount inside the layer acted more largely as thermal resistance. It was also evaluated through sensitivity calculations that the cladding tube temperature was more sensitive to the CRUD porosity and the steam amount in pores than to the inlet flow rate of the coolant.

A Study on Performance and Reactor Behavior of Chemical Refrigerator (화학식 냉동기의 성능 및 반응기 거동에 관한 연구)

  • Park, Seung-Hoon;Lee, Jong-Ho
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.87-95
    • /
    • 1997
  • A chemical heat pump based on the reversible reactions between metal chlorides and ammonia gas is attractive alternative to compression system and liquid absorption systems in cooling and refrigerating fields. The advantages of chemical heat pump are no regulatory constants due to CFC refrigerants, utilization of gas, industrial waste heat, electricity, fuel oil etc. as heat sources and wide applications to energy storage system, large-scale energy managements for industrial process. The scale-up of chemical heat pump from laboratory prototype to pilot plants necessitates the interpretation of system performance and evaluation of dynamic behavior in the chemical reactor. This study contains the prediction of performance of chemical refrigerator according to operating condition, the dynamic simulations through reactor modelling, which is used for the calculation of reactive medium temperature and the conversion variation with reactor cooling temperature, and the effect survey of block parameters on the power of refrigerator.

  • PDF