DOI QR코드

DOI QR Code

Parametric study of population balance model on the DEBORA flow boiling experiment

  • Aljosa Gajsek (Jozef Stefan Institute, Reactor Engineering Division) ;
  • Matej Tekavcic (Jozef Stefan Institute, Reactor Engineering Division) ;
  • Bostjan Koncar (Jozef Stefan Institute, Reactor Engineering Division)
  • Received : 2023.07.13
  • Accepted : 2023.10.29
  • Published : 2024.02.25

Abstract

In two-fluid simulations of flow boiling, the modeling of the mean bubble diameter is a key parameter in the closure relations governing the intefacial transfer of mass, momentum, and energy. Monodispersed approach proved to be insufficient to describe the significant variation in bubble size during flow boiling in a heated pipe. A population balance model (PBM) has been employed to address these shortcomings. During nucleate boiling, vapor bubbles of a certain size are formed on the heated wall, detach and migrate into the bulk flow. These bubbles then grow, shrink or disintegrate by evaporation, condensation, breakage and aggregation. In this study, a parametric analysis of the PBM aggregation and breakage models has been performed to investigate their effect on the radial distribution of the mean bubble diameter and vapor volume fraction. The simulation results are compared with the DEBORA experiments (Garnier et al., 2001). In addition, the influence of PBM parameters on the local distribution of individual bubble size groups was also studied. The results have shown that the modeling of aggregation process has the largest influence on the results and is mainly dictated by the collisions due to flow turbulence.

Keywords

Acknowledgement

The financial support provided by the Slovenian Research Agency, grants P2-0026 and P2-0405 are gratefully acknowledged. This work was supported by the Helmholtz European Partnering Program in the project "Crossing borders and scales (Crossing)".

References

  1. J. Yan, Q. Bi, Z. Liu, G. Zhu, L. Cai, Subcooled flow boiling heat transfer of water in a circular tube under high heat fluxes and high mass fluxes, Fusion Eng. Des. 100 (2015) 406-418, http://dx.doi.org/10.1016/j.fusengdes.2015.07.007. 
  2. A. C.Kheirabadi, D. Groulx, Cooling of server electronics: A design review of existing technology, Appl. Therm. Eng. 105 (2016) 622-638, http://dx.doi.org/10.1016/j.applthermaleng.2016.03.056. 
  3. Y. Zhang, D. Wang, J. Lin, J. Hao, Development of a computer code for thermal-hydraulic design and analysis of helically coiled tube once-through steam generator, Nucl. Eng. Technol. 49 (7) (2017) 1388-1395, http://dx.doi.org/10.1016/j.net.2017.06.017. 
  4. D. Lu, Q. Su, P. Ju, L. Lv, Overview on critical heat flux experiment for the reactor fuel assemblies, Ann. Nucl. Energy 163 (2021) 108585, http://dx.doi.org/10.1016/j.anucene.2021.108585. 
  5. S. Gong, L. Zhang, P. Cheng, E.N. Wang, Understanding triggering mechanisms for critical heat flux in pool boiling based on direct numerical simulations, Int. J. Heat Mass Transfer 163 (2020) 120546, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120546. 
  6. X. Zhang, R. Li, M. Peng, T. Cong, C. He, G. Xia, X. Wei, Numerical analysis on subcooled boiling in PWR coolant channel based on a modified multi-scale interface model, Appl. Therm. Eng. 229 (2023) 120598, http://dx.doi.org/10.1016/j.applthermaleng.2023.120598. 
  7. B. Smith, Assessment of CFD codes used in nuclear reactor safety simulations, Nucl. Eng. Technol. 42 (2010) http://dx.doi.org/10.5516/NET.2010.42.4.339. 
  8. M. Leskovar, M. Ursic, Ex-vessel steam explosion analysis for pressurized water reactor and boiling water reactor, Nucl. Eng. Technol. 48 (1) (2016) 72-86, http://dx.doi.org/10.1016/j.net.2015.08.012. 
  9. R. Knief, Nuclear Engineering: Theory and Technology of Commercial Nuclear Power, American Nuclear Society, 2008. 
  10. R.T. Lahey, E. Baglietto, I.A. Bolotnov, Progress in multiphase computational fluid dynamics, Nucl. Eng. Des. 374 (2021) 111018, http://dx.doi.org/10.1016/j.nucengdes.2020.111018. 
  11. M. Ishii, T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, Springer, 2006. 
  12. J. Chahed, V. Roig, L. Masbernat, Eulerian-Eulerian two-fluid model for turbulent gas-liquid bubbly flows, Int. J. Multiph. Flow 29 (1) (2003) 23-49, http://dx.doi.org/10.1016/s0301-9322(02)00123-4. 
  13. E. Krepper, R. Rzehak, C. Lifante, T. Frank, CFD for subcooled flow boiling: Coupling wall boiling and population balance models, Nucl. Eng. Des. 255 (2013) 330-346, http://dx.doi.org/10.1016/j.nucengdes.2012.11.010. 
  14. A. Gajsek, B. Koncar, M. Tekavcic, A. Prosek, Validation of two-fluid boiling flow model on the DEBORA benchmark experimental data, in: NENE 2021 Conference Proceedings, no. 620, Bled, Slovenia, 2021. 
  15. E. Krepper, R. Rzehak, CFD for subcooled flow boiling: Simulation of DEBORA experiments, Nucl. Eng. Des. 241 (9) (2011) 3851-3866, http://dx.doi.org/10.1016/j.nucengdes.2011.07.003. 
  16. L. Vyskocil, J. Macek, Boiling flow simulation in neptune-CFD and fluent codes, in: Proceedings of the Workshop on Experiments and CFD Code Application to Nuclear Reactor Safety, no. 1027, XCFD4NRS, Nuclear Energy Agency of the OECD (NEA), Bled, Slovenia, 2008. 
  17. Y. Alatrash, Y.J. Cho, C.-H. Song, H.Y. Yoon, Investigation of subcooled boiling wall closures at high pressure using a two-phase CFD code, Nucl. Eng. Technol. 54 (6) (2022) 2276-2296, http://dx.doi.org/10.1016/j.net.2021.12.012. 
  18. S. Mimouni, F. Archambeau, M. Boucker, J. Lavieville, C. Morel, A second order turbulence model based on a Reynolds stress approach for two-phase boiling flow and application to fuel assembly analysis, Nucl. Eng. Des. 240 (9) (2010) 2225-2232, http://dx.doi.org/10.1016/j.nucengdes.2009.11.020. 
  19. W. Yao, C. Morel, Volumetric interfacial area prediction in upward bubbly two-phase flow, Int. J. Heat Mass Transfer 47 (2) (2004) 307-328, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.06.004. 
  20. J.Y. Tu, G.H. Yeoh, G.-C. Park, M.-O. Kim, On Population Balance Approach for Subcooled Boiling Flow Prediction, J. Heat Transfer 127 (3) (2005) 253-264, http://dx.doi.org/10.1115/1.1857952. 
  21. H. Setoodeh, W. Ding, D. Lucas, U. Hampel, Modelling and simulation of flow boiling with an Eulerian-Eulerian approach and integrated models for bubble dynamics and temperature-dependent heat partitioning, Int. J. Therm. Sci. 161 (2021) 106709, http://dx.doi.org/10.1016/j.ijthermalsci.2020.106709. 
  22. J. Peltola, T. Pattikangas, W. Bainbridge, R. Lehnigk, F. Schlegel, On development and validation of subcooled nucleate boiling models for openfoam foundation release, in: 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH 2019, American Nuclear Society (ANS), United States, 2019, pp. 2149-2163. 
  23. M. Colombo, M. Fairweather, Accuracy of Eulerian-Eulerian, two-fluid CFD boiling models of subcooled boiling flows, Int. J. Heat Mass Transfer 103 (2016) 28-44, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.06.098. 
  24. D. Vlcek, Y. Sato, Sensitivity analysis for subcooled flow boiling using Eulerian CFD approach, Nucl. Eng. Des. 405 (2023) http://dx.doi.org/10.1016/j.nucengdes.2023.112194. 
  25. Ansys fluent theory guide, release 21, Ansys Inc, 275 Technology Drive Canonsburg, PA 15317, 2021. 
  26. J. Garnier, E. Manon, G. Cubizolles, Local measurements on flow boiling of refrigerant 12 in a vertical tube, Multiphase Sci. Technol. 13 (1,2) (2001) 1-113, http://dx.doi.org/10.1615/MultScienTechn.v13.i1-2.10. 
  27. M.J. Prince, H.W. Blanch, Bubble coalescence and break-up in air-sparged bubble columns, AIChE J. 36 (10) (1990) 1485-1499, http://dx.doi.org/10.1002/aic.690361004. 
  28. H. Luo, H.F. Svendsen, Theoretical model for drop and bubble breakup in turbulent dispersions, AIChE J. 42 (5) (1996) 1225-1233, http://dx.doi.org/10.1002/aic.690420505. 
  29. Y. Liao, R. Rzehak, D. Lucas, E. Krepper, Baseline closure model for dispersed bubbly flow: Bubble coalescence and breakup, Chem. Eng. Sci. 122 (2015) 336-349, http://dx.doi.org/10.1016/j.ces.2014.09.042. 
  30. F. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32 (8) (1994) 1598-1605, http://dx.doi.org/10.2514/3.12149. 
  31. Y. Sato, K. Sekoguchi, Liquid velocity distribution in two-phase bubble flow, Int. J. Multiph. Flow 2 (1) (1975) 79-95, http://dx.doi.org/10.1016/0301-9322(75)90030-0. 
  32. W.E. Ranz, W. Marshall, Evaporation from drops : Part 2, Chem. Eng. Progress 48 (1952) 173-180. 
  33. M. Ishii, N. Zuber, Drag coefficient and relative velocity in bubbly, droplet or particulate flow, AIChE J. 25 (5) (1979) 843-855, http://dx.doi.org/10.1002/aic.690250513. 
  34. M. de Bertodano, Turbulent Bubbly Two-Phase Flow in a Triangular Duct (Ph.D. thesis), Rensselaer Polytechnic Institute, Troy, New York, 1991. 
  35. A. Tomiyama, Struggle with computational bubble dynamics, Multiphase Sci. Technol. 10 (4) (1998) 369-405, http://dx.doi.org/10.1615/multscientechn.v10.i4.40. 
  36. N. Kurul, M.Z. Podowski, On the modeling of multidimensional effects in boiling channels, in: 27th National Heat Transfer Conference, Mineapolis, Minnesota, USA, 1991. 
  37. M. Lemmert, L.M. Chawla, Influence of Flow Velocity on Surface Boiling Heat Transfer Coefficient in Heat Transfer in Boiling, Academic Press and Hemisphere, New York, NY, USA, 1977. 
  38. R. Cole, A photographic study of pool boiling in the region of the critical heat flux, AlChE J. 6 (1960) 533-542, http://dx.doi.org/10.1002/aic.690060405. 
  39. V.I. Tolubinski, D.M. Kostanchuk, Vapor bubbles growth rate and heat transfer intensity at subcooled water boiling, in: Proceedings of 4th Internatonal Heat Transfer Conferencel, Paris, France, 1970. 
  40. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, Thermophysical properties of fluid systems, in: P.J. Linstrom, W.G. Mallard (Eds.), NIST chemical WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg, MD, http://dx.doi.org/10.18434/T4D303. 
  41. B. Zajec, L. Cizelj, B. Koncar, Effect of mass flow rate on bubble size distribution in boiling flow in temperature-controlled annular test section, Exp. Therm Fluid Sci. 140 (2023) 110758, http://dx.doi.org/10.1016/j.expthermflusci.2022.110758.