DOI QR코드

DOI QR Code

Study on dryout heat flux of axial stratified debris bed under top-flooding

  • Wenbin Zou (School of Mechanical Engineering, Shanghai Jiao Tong University) ;
  • Lili Tong (School of Mechanical Engineering, Shanghai Jiao Tong University) ;
  • Xuewu Cao (School of Mechanical Engineering, Shanghai Jiao Tong University)
  • Received : 2023.03.04
  • Accepted : 2023.10.31
  • Published : 2024.02.25

Abstract

The coolability of the debris bed with a simulant of solidified corium is experimentally studied, focusing on the effects of the structure of the axial stratified debris bed on the dryout heat flux (DHF). DHF was obtained for the four structures with different particle sizes for the axial stratified debris bed under top flooding. The experimental results show that the dryout position of the axial stratified debris bed is formed at the stratified interface indicated by the temperature rise, and the DHF of the axial stratified bed is much lower than that of the homogeneous bed packed with the upper small particles. To predict the dryout heat flux of the stratified debris beds, by considering the properties of the mixed area, a one-dimensional dryout heat flux model of the porous medium is derived from a water and vapor momentum equation for porous medium, two-phase permeability modifications, interfacial drag, and the correlation between capillary pressure and liquid saturation and verified with the experimental data. The modified model can give reasonable results under different structures.

Keywords

Acknowledgement

This work is financially supported by National Natural Science Foundation of China (U1967202).

References

  1. G.W. Mitchell, R.J. Lipinski, M.L. Schwarz, Heat Removal from a Stratified UO2-Sodium Particle bed[R], NUREG/CR-2412, SAND81-1622 R7, Sandia National Laboratory, 1983. 
  2. L. Barleon, H. Werle, Dependence of Dryout Heat Flux on Particle Diameter for Volume- and Bottom-Heated Debris beds[R], Technical report KfK 3138, Kernforschungszentrum Karlsruhe, 1981. 
  3. K. Hu, T.G. Theofanous, On the measurement and mechanism of dryout in volumetrically heated coarse particle beds, Int. J. Multiphas. Flow 17 (4) (1991) 519-532. 
  4. M.J. Konovalikhin, Investigations on Melt Spreading and Coolability in a LWR Severe accident[D], Royal Institute of Technology, 2001. 
  5. K. Atkhen, G. Berthoud, SILFIDE experiment: coolability in a volumetrically heated debris bed, Nucl. Eng. Des. 236 (19/21) (2006) 2126-2134. 
  6. K. Miyazaki, K. Murai, T. Ohama, et al., Dryout heat flux for core debris bed, (I) effects of system pressure and particle size, J. Nucl. Sci. Technol. 23 (8) (1986) 702-710. 
  7. K. Miyazaki, T. Ohama, K. Murai, et al., Dryout heat flux for core debris bed,(II) effects of particle size mixing and coolant flow, J. Nucl. Sci. Technol. 23 (9) (1986) 769-778. 
  8. A.W. Reed, E.D. Bergeron, K.R. Boldt, et al., Coolability of UO2 debris beds in pressurized water pools: DCC-1 and DCC-2 experiment results, Nucl. Eng. Des. 97 (1) (1986) 81-88. 
  9. M. Rashid, R. Kulenovic, E. Laurien, et al., Experimental results on the coolability of a debris bed with multidimensional cooling effects, Nucl. Eng. Des. 241 (11) (2011) 4537-4543. 
  10. I. Lindholm, S. Holmstroem, J. Miettinen, et al., Dryout heat flux experiments with deep heterogeneous particle bed, Nucl. Eng. Des. 236 (19-21) (2006) 2060-2074. 
  11. K.H. Bang, J.M. Kim, Enhancement of dryout heat flux in a debris bed by forced coolant flow from below, Nucl. Eng. Technol. 42 (3) (2010) 297-304. 
  12. S. Thakre, L. Li, W. Ma, An experimental study on coolability of a particulate bed with radial stratification or triangular shape, Nucl. Eng. Des. 276 (2014) 54-63. 
  13. E. Takasuo, An experimental study of the coolability of debris beds with geometry variations, Ann. Nucl. Energy 92 (2016) 251-261. 
  14. C.A. Ottinger, G.W. Mitchell, R.J. Lipinski, et al., D9 Experiment: Heat Removal from Stratified UO2 debris[R], Sandia National Laboratory, 1985. 
  15. K.R. Boldt, A.W. Reed, T.R. Schmidt, DCC-3 Degraded Core Coolability: Experiment and analysis[R], Sandia National Laboratories, 1986. NUREG/CR-4306, SAND86-1033. 
  16. Z. Huang, W. Ma, S. Thakre, Validation of the MEWA code agsinst POMECO-HT experiments and coolability analysis of stratified debris beds [C], in: 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH 2015, Chicago, vol. 4, 2015, pp. 3279-3291. 
  17. R.J. Lipinski, Model for Boiling and Dryout in Particle beds[R], NUREG/CR-2646, Sandia National Laboratory, 1982. 
  18. A.W. Reed, The Effect of Channeling on the Dryout of Heated Particulate Beds Immersed in a Liquid pool[D], Massachusetts Institute of Technology, 1982. 
  19. R.J. Lipinski, A coolability model for post-accident nuclear reactor debris, Nucl. Technol. 65 (1) (1984) 53-66. 
  20. T. Schulenberg, U. Muller, An improved model for two-phase flow through beds of coarse particles, Int. J. Multiphas. Flow 13 (1) (1987) 87-97. 
  21. C. Addabbo, A. Annunziato, D. Magallon, Synopsis of the results of ISP-39 on faro test L-14[C], in: Proceedings of the OECD/CSNI Specialists Meeting on Fuel-Coolant Interactions, Tokai-Mura, 1997, pp. 493-508. 
  22. B.W. Spencer, K. Wang, C.A. Blomquist, L.M. McUmber, J.P. Schneider, Fragmentation and Quench Behavior of Corium Melt Streams in water[R], vol. 1994, US Nuclear Regulatory Commission, Washington, DC, 1994. NUREG/CR-6133, ANL-93/32. 
  23. W.B. Zou, X.S. Bai, L.L. Tong, X.W. Cao, Experimental Investigation on Dryout Behavior of Stratified Debris bed[C]//the 30th International Conference on Nuclear Engineering, ICONE30-1333, Kyoto, Japan, May (Accept). 
  24. S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog. 48 (1952) 89-94. 
  25. L. Li, W. Ma, Experimental characterization of the effective particle diameter of a particulate bed packed with multi-diameter spheres, Nucl. Eng. Des. 241 (5) (2011) 1736-1745. 
  26. L. Li, W. Ma, S. Thakre, An experimental study on pressure drop and dryout heat flux of two-phase flow in packed beds of multi-sized and irregular particles, Nucl. Eng. Des. 242 (2012) 369-378. 
  27. M.C. Leverett, Capillary behavior in porous solids, Trans. AIME 142 (1) (1941) 152-169. 
  28. N. Chikhi, O. Coindreau, L.X. Li, et al., Evaluation of an effective diameter to study quenching and dry-out of complex debris bed, Ann. Nucl. Energy 74 (2014) 24-41. 
  29. S.J. Kline, Describing uncertainties in single-sample experiments, Mech. Eng. 75 (1963) 3-8. 
  30. V.X. Tung, V.K. Dhir, A hydrodynamic model for two-phase flow through porous media, Int. J. Multiphas. Flow 14 (1) (1988) 47-65. 
  31. W. Schmidt, Interfacial drag of two-phase flow in porous media, Int. J. Multiphas. Flow 33 (6) (2007) 638-657. 
  32. J.S. Oh, S.M. An, H.Y. Kim, et al., Hydrodynamic behaviors of adiabatic and diabatic two-phase flow within various particle beds, Int. J. Heat Mass Tran. 194 (2022), 123124.