DOI QR코드

DOI QR Code

Experimental investigation on heat transfer of nitrogen flowing in a circular tube

  • Chenglong Wang (Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Yuliang Fang (Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Wenxi Tian (Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Guanghui Su (Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Suizheng Qiu (Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, School of Nuclear Science and Technology, Xi'an Jiaotong University)
  • Received : 2023.05.16
  • Accepted : 2023.10.16
  • Published : 2024.02.25

Abstract

Average and local convective heat transfer coefficients of nitrogen are measured experimentally in an electrically heated circular tube for a range of Reynolds number from 1.08 × 104 to 3.60 × 104, and wall-to-bulk temperature ratio from 1.01 to 1.77. The exit Mach number is up to 0.17, and the heat flux is up to 46 kW·m-2. The molybdenum test section has a 62 diameters heated section with an inside diameter of 5 mm and a 30 diameters entrance section to ensure the fully-developed flow. Uncertainty of Nusselt number is less than 1.6 % in this study. The results indicate that the average heat transfer correlations evaluated by both the bulk and the modified film Reynolds numbers agree well with the experimental data. The local heat transfer results based on bulk properties are compared with previous empirical correlations. New prediction correlations are recommended which are significantly affected by the property variation and heated length. The comparison between the proposed correlations and experimental points shows that 88 % of experimental data fall into an error of 10 %, and almost all data are within an error of 20 %.

Keywords

Acknowledgement

This work has been supported by the National Natural Science Foundation of China (Grant No. U1967203).

References

  1. O. Olumayegun, M. Wang, G. Kelsall, Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR), Appl. Energy 191 (2017) 436-453. https://doi.org/10.1016/j.apenergy.2017.01.099
  2. X. Zhang, R. Tiwari, A.H. Shooshtari, M.M. Ohadi, An additively manufactured metallic manifold-microchannel heat exchanger for high temperature applications, Appl. Therm. Eng. 143 (2018) 899-908. https://doi.org/10.1016/j.applthermaleng.2018.08.032
  3. A. Pirmohamadi, H. Ghaebi, B.M. Ziapour, M. Ebadollahi, Exergoeconomic analysis of a novel hybrid system by integrating the kalina and heat pump cycles with a nitrogen closed Brayton system, Energy Rep. 7 (2021) 546-564. https://doi.org/10.1016/j.egyr.2021.01.009
  4. C. Liu, Y. Chen, D. Feng, H. Zhang, J. Miao, Y. Feng, Y. Yan, X. Zhang, Experimental study on temperature uniformity and heat transfer performance of nitrogen loop heat pipe with large area and multi-heat source, Appl. Therm. Eng. 210 (2022), 118344.
  5. B.S. Petukhov, Heat transfer and friction in turbulent pipe flow with variable physical properties, Adv. Heat Tran. 6 (1970) 503-564. https://doi.org/10.1016/S0065-2717(08)70153-9
  6. H. Qin, C. Wang, W. Tian, S. Qiu, G. Su, Experimental investigation on heat transfer characteristics of high temperature air in round tube, International Journal of Advanced Nuclear Reactor Design and Technology 3 (2021) 200-205. https://doi.org/10.1016/j.jandt.2021.08.001
  7. Y. Fang, Q. Yu, C. Wang, W. Tian, G. Su, S. Qiu, Heat transfer of hydrogen with variable properties in a heated tube, Int. J. Heat Mass Tran. 209 (2023), 124128.
  8. M.D. Donne, E. Meerwald, Heat transfer and friction coefficients for turbulent flow of air in smooth annuli at high temperatures, Int. J. Heat Mass Tran. 16 (1973) 787-809. https://doi.org/10.1016/0017-9310(73)90091-4
  9. D.A. Campbell, H.C. Perkins, Variable property turbulent heat and momentum transfer for air in a vertical rounded corner triangular duct, Int. J. Heat Mass Tran. 11 (1968) 1003-1012. https://doi.org/10.1016/0017-9310(68)90006-9
  10. W.H. Lowdermilk, W.F. Weiland, J.N.B. Livingood, Measurement of Heat-Transfer and Friction Coefficients for Flow of Air in Noncircular Ducts at High Surface Temperatures, 1954. Cleveland, Ohio.
  11. R.Z. Schuff, H. Jung, C.L. Merkle, W.E. Anderson, Experimental investigation of asymmetric heating in a high aspect ratio cooling channel with supercritical nitrogen, in: 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2007, p. 5546.
  12. M.F. Taylor, Correlation of Local Heat Transfer Coefficients for Single Phase Turbulent Flow of Hydrogen in Tubes with Temperature Ratios to, vol. 23, 1968.
  13. R.G. Deissler, C.S. Eian, Analytical and Experimental Investigation of Fully Developed Turbulent Flow of Air in a Smooth Tube with Heat Transfer with Variable Fluid Properties, 1952. Cleveland, Ohio.
  14. M.E. Davenport, P.M. Magee, G. Leppert, Heat Transfer and Pressure Drop for a Gas at High Temperature, 1961. Stanford, California.
  15. M.D. Donne, F.H. Bowditch, Local Heat Transfer and Average Friction Coefficients for Subsonic Laminar, Transitional and Turbulent Flow of Air in a Tube at High Temperature, 1962. Winfrith, Dorchester, Dorset.
  16. M.D. Donne, On the effect of a large temperature difference on the velocity and temperature profiles for the turbulent flow of air in a tube, Int. J. Heat Mass Tran. 26 (1983) 1259-1261. https://doi.org/10.1016/S0017-9310(83)80182-3
  17. W.H. Lowdermilk, M.D. Grele, Heat Transfer from High-Temperature Surfaces to Fluid II - Correlation of Heat-Transfer and Friction Data for Air Flowing in Inconel Tube with Rounded Entrance, 1949. Cleveland, Ohio.
  18. D.M. McEligot, Effect of Large Temperature Gradients on Turbulent Flow of Gases in the Down-Stream Region of Tubes, Doctoral of Philosophy, Stanford University, 1963.
  19. D.M. McEligot, Effect of Large Temperature Gradients on Turbulent Flow of Gases in the Downstream Region of Tubes, Stanford University, 1962.
  20. D.M. McEligot, P.M. Magee, G. Leppert, Effect of large temperature gradients on convective heat transfer: the downstream region, J. Heat Tran. 87 (1965) 67-73. https://doi.org/10.1115/1.3689054
  21. P.M. Magee, D.M. McEligot, Effect of property variation on the turbulent flow of gases in tubes: the thermal entry, Nucl. Sci. Eng. 31 (1968) 337-341. https://doi.org/10.13182/NSE68-A18246
  22. H.C. Perkins, P. Worsoe-Schmidt, Turbulent heat and momentum transfer for gases in a circular tube at wall to bulk temperature ratios to seven, Int. J. Heat Mass Tran. 8 (1965) 1011-1031. https://doi.org/10.1016/0017-9310(65)90085-2
  23. M.F. Taylor, Prediction of Friction and Heat Transfer Coefficients with Large Variations in Fluid Profiles, 1970.
  24. B.S. Petukhov, V.V. Kirillov, V.N. Maidanik, Heat transfer experimental research for turbulent gas flow in pipes at high temperature differences between wall and bulk fluid temperature, International Heat Transfer Conference 3 (1966) 285-292. Chicago, USA.
  25. A.M. Shehata, Mean Turbulence Structure in Strongly Heated Air Flows, DOCTOR OF PHILOSOPHY, THE UNIVERSITY OF ARIZONA, 1984.
  26. K. Ezato, A.M. Shehata, T. Kunugi, D.M. McEligot, Numerical Prediction of Transitional Features of Turbulent Forced Gas Flows in Circular Tubes with Strong Heating, 1997.
  27. J. Lee, Gas Heat Transfer in a Heated Vertical Channel under Deteriorated Turbulent Heat Transfer Regime, Doctoral Thesis, Massachusetts Institute of Technology, 2007.
  28. J.I. Lee, P. Hejzlar, P. Saha, M.S. Kazimi, D.M. McEligot, Deteriorated turbulent heat transfer (DTHT) of gas up-flow in a circular tube: heat transfer correlations, Int. J. Heat Mass Tran. 51 (2008) 5318-5326. https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.022
  29. J.I. Lee, P. Hejzlar, P. Saha, P. Stahle, M.S. Kazimi, D.M. McEligot, Deteriorated turbulent heat transfer (DTHT) of gas up-flow in a circular tube: experimental data, Int. J. Heat Mass Tran. 51 (2008) 3259-3266. https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.021
  30. F.I. Valentin, D.M. McEligot, N. Artoun, M. Kawaji, Forced and mixed convection heat transfer at high pressure and high temperature in a graphite flow channel, J. Heat Tran. 140 (2018).
  31. D.M. McEligot, X. Chu, R.S. Skifton, E. Laurien, Internal convective heat transfer to gases in the low-Reynolds-number "turbulent" range, Int. J. Heat Mass Tran. 121 (2018) 1118-1124. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.086
  32. D.M. McEligot, X. Chu, J.H. Bae, E. Laurien, J.Y. Yoo, Some observations concerning "laminarization" in heated vertical tubes, Int. J. Heat Mass Tran. 163 (2020).
  33. I.L. Shabalin, Ultra-high Temperature Materials I: Carbon (Graphene/graphite) and Refractory Metals, Springer Netherlands, 2014.
  34. Y.S. Touloukian, R. Powell, C. Ho, P. Klemens, Thermophysical Properties of Matter - the TPRC Data Series. Volume 1. Thermal Conductivity - Metallic Elements and Alloys, 1970.
  35. R. Span, E.W. Lemmon, R.T. Jacobsen, W. Wagner, A. Yokozeki, A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa, J. Phys. Chem. Ref. Data 29 (2001) 1361.
  36. E.W. Lemmon, R.T. Jacobsen, Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air, Int. J. Thermophys. 25 (2004) 21-69. https://doi.org/10.1023/B:IJOT.0000022327.04529.f3
  37. S. Kline, F. McClintock, Describing uncertainties in single-sample experiments, Mech. Eng. 75 (1953) 3-8.