DOI QR코드

DOI QR Code

Mechanical and elastic properties of vitrified radioactive wastes using ultrasonic technique

  • Sema Akyil Erenturk (Energy Institute, Istanbul Technical University) ;
  • Filiz Gur (Institute of Nuclear Sciences, Ege University) ;
  • Mahmoud A.A. Aslani (Institute of Nuclear Sciences, Ege University)
  • Received : 2023.02.28
  • Accepted : 2023.10.16
  • Published : 2024.02.25

Abstract

It is important that radioactive and nuclear wastes are immobilized in a glass composition with lower melting temperatures due to their economy. In this study, the elastic and mechanical properties of sodium borate-based vitrified radioactive waste were measured using ultrasonic techniques. Many ultrasonic parameters, such as elastic moduli, Poisson's ratio, and microhardness, were calculated by measuring the ultrasonic velocities of the glasses. The ultrasonic velocity data, the density, the calculated elastic moduli, micro-hardness, softening temperature, and Debye temperature depending on the glass composition were evaluated, and the relation with the structure was clarified. It was observed that the elastic modulus and Poisson ratio increased as the Cs2O content increased in glasses containing Cs waste. This result shows that the rigidity of the network structure of these glasses increases in contrast to the glass containing Sr.

Keywords

References

  1. R.K. Brow, M.L. Schmitt, A survey of energy and environmental applications of glass, J. Eur. Ceram. Soc. 29 (2009) 1193-1201, https://doi.org/10.1016/j.jeurceramsoc.2008.08.011. 
  2. S. Shirvani, M.H. Mallah, M.A. Moosavian, J. Safdari, Studies of removal of uranium from wastewater by novel magmolecular process with the aim to learn for nuclear waste management, J. Radioanal. Nucl. Chem. 310 (1) (2016) 45-52, https://doi.org/10.1007/s10967-016-4789-2. 
  3. J.K. Sutherland, Radioactive wastes, origins, classification and management in nuclear energy materials and reactors, in: Y.A. Hassan, R.A. Chaplin (Eds.), Encyclopaedia of Life Support Systems, United Nations Educational, Scientific and Cultural Organization, Paris, 2010, pp. 173-214. 
  4. Y. Saddeek, Structural and acoustical studies of lead sodium borate glasses, J. Alloys Compd. 467 (1) (2009) 14-21, https://doi.org/10.1016/j.jallcom.2007.11.126. 
  5. I.L. Pegg, Behavior of technetium in nuclear waste vitrification processes, J. Radioanal. Nucl. Chem. 305 (1) (2015) 287-292, https://doi.org/10.1007/s10967-014-3900-9. 
  6. Y. Cheng, H. Xiao, W. Guo, W. Guo, Structure and crystallization kinetics of PbO-B2O3 glasses, Ceram. Int. 33 (2007) 1341-1347, https://doi.org/10.1016/j.ceramint.2006.04.025. 
  7. S. Akyil Erenturk, M. Bengisu, C. Erdogan, Evaluation of sodium borate glasses for radioactive waste immobilization applications, J. Radioanal. Nucl. Chem. 314 (2017) 2069-2086, https://doi.org/10.1007/s10967-017-5536-z. 
  8. C. Erdogan, M. Bengisu, S. Akyil Erenturk, Chemical durability and structural analysis of PbO-B2O3 glasses and testing for simulated radioactive wastes, J. Nucl. Mater. 445 (2014) 154-164, https://doi.org/10.1016/j.jnucmat.2013.10.025. 
  9. A. Abd El-Moneim, I.M. Youssof, L. Abd El-Latif, Structural role of RO and Al2O3 in borate glasses using an ultrasonic technique, Acta Mater. 54 (2006) 3811-3819, https://doi.org/10.1016/j.actamat.2006.04.012. 
  10. R. El-Mallawany, N. El-Khoshkhany, H. Afifi, Ultrasonic studies of (TeO2)50-(V2O5)50-x(TiO2)x glasses, Mater. Chem. Phys. 95 (2006) 321-327, https://doi.org/10.1016/j.matchemphys.2005.06.025. 
  11. S.Y. Marzouk, Ultrasonic and infrared measurements of copper-doped sodium phosphate glasses, Mater. Chem. Phys. 114 (2009) 188-193, https://doi.org/10.1016/j.matchemphys.2008.09.021. 
  12. S. Gholizadeh, A review of non-destructive testing methods of composite materials, Procedia Struct. Integr. 1 (2016), https://doi.org/10.1016/j.prostr.2016.02.008,050-057. 
  13. U. Kumar, S. Kaity, A. Arya, A. Banerjee, Characterization and thermal expansion of Th-10Zr alloy, J. Radioanal. Nucl. Chem. 331 (2022) 1619-1627, https://doi.org/10.1007/s10967-022-08217-0. 
  14. L.P. Martin, E.A. Lindgren, M. Rosen, H. Sidhu, Ultrasonic determination of elastic moduli in cement during hydrostatic loading to 1 GPa, Mater. Sci. Eng. A279 (2000) 87-94, https://doi.org/10.1016/S0921-5093(99)00639-5. 
  15. N. Parveen, G.V.S. Murthy, Determination of elastic modulus in nickel alloy from ultrasonic measurements, Bull. Mater. Sci. 34 (2) (2011) 323-326, https://doi.org/10.1007/s12034-011-0070-z. 
  16. D. Souri, Ultrasonic velocities, elastic modulus and hardness of ternary Sb-V2O5-TeO2 glasses, J. Non-Cryst. Solids 470 (2017) 112-121, https://doi.org/10.1016/j.jnoncrysol.2017.05.006. 
  17. R. El-Mallawany, Quantitative analysis of elastic moduli of tellurite glasses, J. Mater. Res. 5 (1990) 2218-2222. 
  18. J. Krautkramer, H. Krautkramer, Ultrasonic Testing of Materials, Springer, Berlin, 1990. 
  19. H. Doweidar, Y.B. Saddeek, FTIR and ultrasonic investigations on modified bismuth borate glasses, J. Non-Cryst. Solids 355 (2009) 348-354, https://doi.org/10.1016/j.jnoncrysol.2008.12.008. 
  20. Y.S. Rammah, M.S. Gaafar, S.Y. Marzouk, H. El-Rashidy, I.O. Olarinoye, R. El-Mallawany, Ultrasonic waves, mechanical properties and radiation shielding competence of Er3+ doped lead borate glasses: experimental and theoretical investigations, J. Australas. Ceram. Soc. 57 (2021) 1163-1176, https://doi.org/10.1007/s41779-021-00614-0. 
  21. A.A. El-Moneim, R. El-Mallawany, Y.B. Saddeek, Nb22O5-TeO2 and Nb2O5-Li2O-TeO2 glasses: evaluation of elastic properties, J. Non-Cryst. Solids 575 (2022), 121229, https://doi.org/10.1016/j.jnoncrysol.2021.121229. 
  22. R. El-Mallawany, A. El Adawy, A. Gamal, Y.S. Rammah, Experimental and theoretical elastic moduli of sodium-zinc-tellurite glasses, OPTIK - Int J Light Electron Opt. 243 (2021), 167330, https://doi.org/10.1016/j.ijleo.2021.167330.