• Title/Summary/Keyword: ECRH

Search Result 2, Processing Time 0.014 seconds

Conceptual design and analysis of remote steering system for CFETR ECRH system

  • Chao Zhang;Xiaojie Wang;Dajun Wu;Yunying Tang;Hanlin Wang;Dingzhen Li;Fukun Liu;Muquan Wu;Peiguang Yan;Xiang Gao;Jiangang Li
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.451-462
    • /
    • 2024
  • In order to optimize the operational safety and reliability of the upper launcher for the CFETR ECRH system, a design of the launcher based on the remote steering concept is currently being carried out for comparison with the front steering equivalent. This paper presents the remote steering system's conceptual design and simulation analysis. A Square Corrugated Waveguide (SCW) of 65 × 65 mm has been designed with an optimized length of 9.35 m. By changing the relative length of the waveguide, the transmission efficiency of the SCW is optimized within the range of steering angles ±12°. Different error factors are investigated in detail, and corresponding acceptable error ranges are provided. Considering these error factors and ignoring ohmic losses and thermal effects, the relative transmission efficiency of the SCW is estimated to be >98 % within the steering angle range. A matching steering unit for the SCW is designed, which consists of an ellipsoidal focusing mirror and a steerable flat mirror. The detailed design of the steerable mirror motion trajectory is presented. Also, the influence of the possible beam incident errors caused by the steering unit on the transmission efficiency is analyzed in detail.

Quasi-optical design and analysis of a remote steering launcher for CFETR ECRH system

  • Zhang Chao;Xiaojie Wang;Dajun Wu;Yunying Tang;Hanlin Wang;Dingzhen Li;Fukun Liu;Muquan Wu;Peiguang Yan;Xiang Gao;Jiangang Li
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1619-1626
    • /
    • 2024
  • In order to optimize the operational safety and reliability of the upper launcher for the CFETR ECRH system, a design of the launcher for NTM control based on the remote steering concept is currently being carried out for comparison with the front steering equivalent. This paper presents the layout design and analysis of the quasi-optical system in the remote steering launcher. A 3D visual quasi-optical design tool has been developed for the quasi-optical system, which can parameterize modeling, perform general astigmatic beam calculation and show the accurate beam propagation path in the upper port. Three identical sets of quasi-optical modules are arranged in the launcher, and each one consists of two fixed double-curvature focusing mirrors, which focus and reflect the steering beams (- 12°-12°) from two square corrugated waveguides. The beam characteristics at the resonance layer are described, and the average beam radius is < 100 mm. The peak head loads on the surfaces of the two fixed mirrors are 1.63 MW/m2 and 1.52 MW/m2. The position and size of the beam channel in the blanket are obtained, and the opening apertures on the launcher-facing and plasma-facing sides of the blanket module are 0.54 m2 and 0.4 m2, respectively.