DOI QR코드

DOI QR Code

Modular reactors: What can we learn from modular industrial plants and off site construction research

  • 투고 : 2023.02.22
  • 심사 : 2023.07.18
  • 발행 : 2024.01.25

초록

New modular factory-built methodologies implemented in the construction and industrial plant industries may bring down costs for modular reactors. A factory-built environment brings about benefits such as; improved equipment, tools, quality, shift patterns, training, continuous improvement learning, environmental control, standardisation, parallel working, the use of commercial off shelf equipment and much of the commissioning can be completed before leaving the factory. All these benefits combine to reduce build schedules, increase certainty, reduce risk and make financing easier and cheaper.Currently, the construction and industrial chemical plant industries have implemented successful modular design and construction techniques. Therefore, the objectives of this paper are to understand and analyse the state of the art research in these industries through a systematic literature review. The research can then be assessed and applied to modular reactors.The literature review highlighted analysis methods that may prove to be useful. These include; modularisation decision tools, stakeholder analysis, schedule, supply chain, logistics, module design tools and construction site planning. Applicable research was highlighted for further work exploration for designers to assess, develop and efficiently design their modular reactors.

키워드

참고문헌

  1. J.R. Lovering, A. Yip, T. Nordhaus, Historical construction costs of global nuclear power reactors, Energy Pol. 91 (2016) 371-382, https://doi.org/10.1016/j.enpol.2016.01.011.
  2. W.R. Stewart, K. Shirvan, Capital cost estimation for advanced nuclear power plants, Renew. Sustain. Energy Rev. 155 (2022), 111880, https://doi.org/10.1016/j.rser.2021.111880.
  3. A. Gilbert, B.K. Sovacool, P. Johnstone, A. Stirling, Cost overruns and financial risk in the construction of nuclear power reactors: a critical appraisal, Energy Pol. 102 (2017) 644-649, https://doi.org/10.1016/j.enpol.2016.04.001.
  4. J. Koomey, N.E. Hultman, A. Grubler, A reply to "Historical construction costs of global nuclear power reactors.", Energy Pol. 102 (2017) 640-643, https://doi.org/10.1016/j.enpol.2016.03.052.
  5. B. Sutharshan, M. Mutyala, R.P. Vijuk, A. Mishra, The AP1000TM reactor: passive safety and modular design, in: Energy Procedia, 2011, pp. 293-302, https://doi.org/10.1016/j.egypro.2011.06.038.
  6. B. Mignacca, G. Locatelli, M. Alaassar, D.C. Invernizzi, We never built small modular reactors SMRs but what do we know about modularization in construction, in: 26th International Conference on Nuclear Engineering, ASME, London, 2018.
  7. T. Bock, The future of construction automation: technological disruption and the upcoming ubiquity of robotics, Autom. ConStruct. 59 (2015) 113-121, https://doi.org/10.1016/j.autcon.2015.07.022.
  8. R. Jin, S. Gao, A. Cheshmehzangi, E. Aboagye-Nimo, A holistic review of off-site construction literature published between 2008 and 2018, J. Clean. Prod. 202 (2018) 1202-1219, https://doi.org/10.1016/j.jclepro.2018.08.195.
  9. M.R. Hosseini, I. Martek, E.K. Zavadskas, A.A. Aibinu, M. Arashpour, N. Chileshe, Critical evaluation of off-site construction research: a Scientometric analysis, Autom. ConStruct. 87 (2018) 235-247, https://doi.org/10.1016/j.autcon.2017.12.002.
  10. K. Barry, Modularization of Equipment for New Nuclear Applications, 2009, 1021178.
  11. B. Mignacca, G. Locatelli, Economics and finance of Small Modular Reactors: a systematic review and research agenda, Renew. Sustain. Energy Rev. 118 (2020), 109519, https://doi.org/10.1016/j.rser.2019.109519.
  12. G.S. Rothwell, Economics of nuclear power versus other energy sources, Encycl. Nucl. Energy (2021) 670-681, https://doi.org/10.1016/B978-0-12-819725-7.00075-1.
  13. V. Nian, B. Mignacca, G. Locatelli, Policies toward net-zero: benchmarking the economic competitiveness of nuclear against wind and solar energy, Appl. Energy 320 (2022), 119275, https://doi.org/10.1016/J.APENERGY.2022.119275.
  14. A. Asuega, B.J. Limb, J.C. Quinn, Techno-economic analysis of advanced small modular nuclear reactors, Appl. Energy 334 (2023), 120669, https://doi.org/10.1016/J.APENERGY.2023.120669.
  15. S. Moran, Process Plant Layout, second ed., Butterworth-Heinemann, 2016.
  16. T. Bock, The future of construction automation: technological disruption and the upcoming ubiquity of robotics, Autom. ConStruct. 59 (2015) 113-121, https://doi.org/10.1016/j.autcon.2015.07.022.
  17. T. Seifert, S. Sievers, C. Bramsiepe, G. Schembecker, Small scale, modular and continuous: a new approach in plant design, Chem. Eng. Process. Process Intensif. 52 (2012) 140-150, https://doi.org/10.1016/j.cep.2011.10.007.
  18. Michael Baldea, T.F. Edgar, B.L. Stanley, A.A. Kiss, Modular manufacturing processes: status, challenges, and opportunities, AIChE J. 63 (2017) 4262-4272, https://doi.org/10.1002/aic.15872.
  19. M. Baldea, T.F. Edgar, B.L. Stanley, A.A. Kiss, Modular manufacturing processes: status, challenges, and opportunities, AIChE J. 63 (2017) 4262-4272, https://doi.org/10.1002/aic.15872.
  20. J. Bielenberg, I. Palou-Rivera, The RAPID Manufacturing Institute - reenergizing US efforts in process intensification and modular chemical processing, Chem. Eng. Process. - Process Intensif. 138 (2019) 49-54, https://doi.org/10.1016/j.cep.2019.02.008.
  21. C. Bramsiepe, S. Sievers, T. Seifert, G.D. Stefanidis, D.G. Vlachos, H. Schnitzer, B. Muster, C. Brunner, J.P.M. Sanders, M.E. Bruins, G. Schembecker, Low-cost small scale processing technologies for production applications in various environments-Mass produced factories, Chem. Eng. Process. Process Intensif. 51 (2012) 32-52, https://doi.org/10.1016/j.cep.2011.08.005.
  22. Zeton, Modular Fabrication [WWW Document], 2021. https://www.zeton.com/zeton-advantage/modular-fabrication/.
  23. Modular Building Institute, Why Build Modular" [WWW Document], 2013. http://www.modular.org/HtmlPage.aspx?name=why_modular, 5.31.20.
  24. N. Kockmann, Modular equipment for chemical process development and smallscale production in multipurpose plants, ChemBioEng Rev. 3 (2016) 5-15, https://doi.org/10.1002/cben.201500025.
  25. C. Eftimie, How to efficiently engineer the onshore facilities: standardized modularization drivers, challenges and perspectives in the oil and gas industry, Project Value Delivery, Expert (2016) 1-4, 2016-01 rev 0, https://www.projectvaluedelivery.com/expert/PVD_Expert_2016-01_Standard_Modularization_v0.pdf.
  26. J. Bielenberg, I. Palou-Rivera, The RAPID Manufacturing Institute - reenergizing US efforts in process intensification and modular chemical processing, Chem. Eng. Process. - Process Intensif. 138 (2019) 49-54, https://doi.org/10.1016/j.cep.2019.02.008.
  27. General Dynamics, General Dynamics Electric Boat [WWW Document]. Gen. Dyn. Electr. Boat, 2020. http://www.gdeb.com/, 5.31.20.
  28. T. Seifert, H. Schreider, S. Sievers, G. Schembecker, C. Bramsiepe, Real option framework for equipment wise expansion of modular plants applied to the design of a continuous multiproduct plant, Chem. Eng. Res. Des. 93 (2015) 511-521, https://doi.org/10.1016/j.cherd.2014.07.019.
  29. S. Sievers, T. Seifert, G. Schembecker, C. Bramsiepe, Methodology for evaluating modular production concepts, Chem. Eng. Sci. 155 (2016) 153-166, https://doi.org/10.1016/j.ces.2016.08.006.
  30. N. Krasberg, L. Hohmann, T. Bieringer, C. Bramsiepe, N. Kockmann, Selection of technical reactor equipment for modular, continuous small-scale plants, Processes 2 (2014) 265-292, https://doi.org/10.3390/pr2010265.
  31. H. Radatz, M. Schroder, C. Becker, C. Bramsiepe, G. Schembecker, Selection of equipment modules for a flexible modular production plant by a multi-objective evolutionary algorithm, Comput. Chem. Eng. 123 (2019) 196-221, https://doi.org/10.1016/j.compchemeng.2018.12.009.
  32. M. Eilermann, C. Post, H. Radatz, C. Bramsiepe, G. Schembecker, A general approach to module-based plant design, Chem. Eng. Res. Des. 137 (2018) 125-140, https://doi.org/10.1016/j.cherd.2018.06.039.
  33. M. Eilermann, C. Schach, P. Sander, C. Bramsiepe, G. Schembecker, Generation of an equipment module database - a maximum coverage problem, Chem. Eng. Res. Des. 148 (2019) 164-168, https://doi.org/10.1016/j.cherd.2019.05.055.
  34. H. Radatz, A. Kragl, J. Kampwerth, C. Stark, N. Herden, G. Schembecker, Application and evaluation of preselection approaches to decide on the use of equipment modules, Chem. Eng. Res. Des. 173 (2021) 89-107, https://doi.org/10.1016/j.cherd.2021.06.021.
  35. L. Hady, G. Wozny, Computer-aided web-based application to modular plant design, Comput. Aided Chem. Eng. (2010), https://doi.org/10.1016/S1570-7946(10)28115-4.
  36. L. Hady, G. Wozny, Modularization within the framework of the course computer-aided plant design, Comput. Aided Chem. Eng. 29 (2011) 1120-1124, https://doi.org/10.1016/B978-0-444-54298-4.50003-9.
  37. M. Eilermann, A methodology to generate modular equipment for an equipment database in module-based plant design, in: Computing and Systems Technology Division 2016 - Core Programming Area at the 2016 AIChE Annual Meeting, AIChE, San Francisco, 2016, pp. 310-311.
  38. M. Eilermann, C. Post, D. Schwarz, S. Leufke, G. Schembecker, C. Bramsiepe, Generation of an equipment module database for heat exchangers by cluster analysis of industrial applications, Chem. Eng. Sci. 167 (2017) 278-287, https://doi.org/10.1016/j.ces.2017.03.064.
  39. C. Fleischer-Trebes, N. Krasberg, C. Bramsiepe, N. Kockmann, Planning approach for modular plants in the chemical industry, Chem. Ing. Tech. 89 (2017) 785-799, https://doi.org/10.1002/cite.201600083.
  40. L. Hohmann, K. Kossl, N. Kockmann, G. Schembecker, C. Bramsiepe, Modules in process industry - A life cycle definition, Chem. Eng. Process 111 (2017) 115-126, https://doi.org/10.1016/j.cep.2016.09.017.
  41. EU Community Research and Development Information Service, Final Report Summary - F3 FACTORY (Flexible, Fast and Future Production Processes) [WWW Document]. Flexible, Fast Futur. Prod. Process, 2013. https://cordis.europa.eu/project/rcn/92587/reporting/en.
  42. EU Community Research and Development Information Service, Final Report Summary - F3 FACTORY (Flexible, Fast and Future Production Processes) [WWW Document]. Flexible, Fast Futur, Prod. Process, 2013.
  43. N.-K. Ku, J.-H. Hwang, J.-C. Lee, M.-I. Roh, K.-Y. Lee, Optimal module layout for a generic offshore LNG liquefaction process of LNG-FPSO, Ships Offshore Struct. 9 (2014) 311-332, https://doi.org/10.1080/17445302.2013.783454.
  44. I. Marthinusen, The Acquisition and Codification of Knowledge-Based Engineeing, 2016.
  45. K.S. Kim, M. Il Roh, A submarine arrangement design program based on the expert system and the multistage optimization, Adv. Eng. Software 98 (2016) 97-111, https://doi.org/10.1016/j.advengsoft.2016.04.008.
  46. K.S. Kim, M. Il Roh, S. Ha, Expert system based on the arrangement evaluation model for the arrangement design of a submarine, Expert Syst. Appl. 42 (2015) 8731-8744, https://doi.org/10.1016/j.eswa.2015.07.026.
  47. S.K. Jung, M. Il Roh, K.S. Kim, Arrangement method of a naval surface ship considering stability, operability, and survivability, Ocean Eng. 152 (2018) 316-333, https://doi.org/10.1016/j.oceaneng.2018.01.058.
  48. X. Yin, H. Liu, Y. Chen, M. Al-Hussein, Building information modelling for off-site construction: review and future directions, Autom. ConStruct. 101 (2019) 72-91, https://doi.org/10.1016/j.autcon.2019.01.010.
  49. P. Martinez, M. Al-Hussein, R. Ahmad, A scientometric analysis and critical review of computer vision applications for construction, Autom. ConStruct. 107 (2019), https://doi.org/10.1016/j.autcon.2019.102947.
  50. M.L. De La Torre, R. Sause, S. Slaughter, R.H. Hendricks, Review and Analysis of Modular Construction Practices, Lehigh University, 1994.
  51. K. Roberts, Modular design of smaller-scale GTL plants, Petrol. Technol. Q. 18 (2013) 101-103.
  52. J. Choi, H. Song, Evaluation of the modular method for industrial plant construction projects, Int. J. Constr. Manag. 14 (2014) 171-180, https://doi.org/10.1080/15623599.2014.922728.
  53. J.O. Choi, J.T. O'Connor, Y.H. Kwak, B.K. Shrestha, Modularization business case analysis model for industrial projects, J. Manag. Eng. 35 (2019) 1-11, https://doi.org/10.1061/(ASCE)ME.1943-5479.0000683.
  54. J.T. O'Connor, W.J. O'Brien, J.O. Choi, Standardization strategy for modular industrial plants, J. Construct. Eng. Manag. 141 (2015) 1-10, https://doi.org/10.1061/(ASCE)CO.1943-7862.0001001.
  55. J. Bai, S. Hoskins, D. Hodapp, W. Ma, D. Wisch, LNG facilities module design considerations during marine transportation, in: Offshore Technology Conference, Proceedings, 2016, pp. 1216-1226.
  56. A. Bondi, A. Magagnini, M. Mancini, G.J.L. Micheli, A. Travaglini, Supporting decisions on industrial plant modularization : a case study approach in the oil and gas sector, in: International Conference on Industrial Engineering and Operations Management, Kuala Lumpur, 2016, pp. 742-753.
  57. X. Hu, H.Y. Chong, X. Wang, K. London, Understanding stakeholders in off-site manufacturing: a literature review, J. Construct. Eng. Manag. (2019), https://doi.org/10.1061/(ASCE)CO.1943-7862.0001674.
  58. C. Goodier, A. Gibb, M. Mancini, C. Turck, O. Gjepali, E. Daniels, Modularisation and offsite in engineering construction: an early decision-support tool, Proc. Inst. Civ. Eng. - Civ. Eng. 172 (2019) 3-14, https://doi.org/10.1680/jcien.19.00015.
  59. P.Y. Hsu, P. Angeloudis, M. Aurisicchio, Optimal logistics planning for modular construction using two-stage stochastic programming, Autom. ConStruct. 94 (2018) 47-61, https://doi.org/10.1016/j.autcon.2018.05.029.
  60. P.Y. Hsu, M. Aurisicchio, P. Angeloudis, Risk-averse supply chain for modular construction projects, Autom. ConStruct. 106 (2019), 102898, https://doi.org/10.1016/j.autcon.2019.102898.
  61. B. Anvari, P. Angeloudis, W.Y. Ochieng, A multi-objective GA-based optimisation for holistic Manufacturing, transportation and Assembly of precast construction, Autom. ConStruct. 71 (2016) 226-241, https://doi.org/10.1016/j.autcon.2016.08.007.
  62. H. Taghaddos, U. Hermann, A.B. Abbasi, Automated crane planning and optimization for modular construction, Autom. ConStruct. 95 (2018) 219-232, https://doi.org/10.1016/j.autcon.2018.07.009.
  63. J. Xu, Z. Li, Multi-objective dynamic construction site layout planning in fuzzy random environment, Autom. ConStruct. 27 (2012) 155-169, https://doi.org/10.1016/j.autcon.2012.05.017.
  64. H. Song, J. Choi, Evaluation of the modular method for industrial plant construction projects, Int. J. Constr. Manag. 14 (2014) 171-180.
  65. M. Tanabe, A. Miyake, Safety design approach for onshore modularized LNG liquefaction plant, J. Loss Prev. Process. Ind. 23 (2010) 507-514, https://doi.org/10.1016/j.jlp.2010.04.004.
  66. Y. Yang, M. Pan, W. Pan, 'Co-evolution through interaction' of innovative building technologies: the case of modular integrated construction and robotics, Autom. ConStruct. 107 (2019), https://doi.org/10.1016/j.autcon.2019.102932.
  67. K. Akagi, K. Murayama, M. Yoshida, J. Kawahata, Modularization technology in power plant construction, in: 10th International Conference on Nuclear Engineering, ASME, Arlington, 2002, pp. 641-647, https://doi.org/10.1115/ICONE10-22244.
  68. T. Salama, A. Salah, O. Moselhi, M. Al-Hussein, Near optimum selection of module configuration for efficient modular construction, Autom. ConStruct. 83 (2017) 316-329, https://doi.org/10.1016/j.autcon.2017.03.008.
  69. X. Li, Z. Li, G. Wu, Modular and offsite construction of piping: current barriers and route, Appl. Sci. 7 (2017) 547, https://doi.org/10.3390/app7060547.
  70. C. Rausch, M. Nahangi, C. Haas, W. Liang, Monte Carlo simulation for tolerance analysis in prefabrication and offsite construction, Autom. ConStruct. 103 (2019) 300-314, https://doi.org/10.1016/j.autcon.2019.03.026.
  71. H.P. Tserng, Y.L. Yin, E.J. Jaselskis, W.C. Hung, Y.C. Lin, Modularization and assembly algorithm for efficient MEP construction, Autom. ConStruct. 20 (2011) 837-863, https://doi.org/10.1016/j.autcon.2011.03.002.
  72. T. Samarasinghe, T. Gunawardena, P. Mendis, M. Sofi, L. Aye, Dependency Structure Matrix and Hierarchical Clustering based algorithm for optimum module identification in MEP systems, Autom. ConStruct. 104 (2019) 153-178, https://doi.org/10.1016/j.autcon.2019.03.021.
  73. B. Medjdoub, P. Richens, N. Barnard, Generation of variational standard plant room solutions, Autom. ConStruct. 12 (2003) 155-166, https://doi.org/10.1016/S0926-5805(02)00006-7.
  74. B. Medjdoub, M.B. Chenini, A constraint-based parametric model to support building services design exploration, Architect. Eng. Des. Manag. 11 (2015) 123-136, https://doi.org/10.1080/17452007.2013.834812.
  75. B. Medjdoub, G. Bi, Parametric-based distribution duct routing generation using constraint-based design approach, Autom. ConStruct. 90 (2018) 104-116, https://doi.org/10.1016/j.autcon.2018.02.006.
  76. B. Medjdoub, Constraint-based adaptation for complex space configuration in building services, Electron. J. Inf. Technol. Construct. ITcon Vol. 14. (2009) 724-735.
  77. K. Kobayashi, T. Oba, New concept for standardized large-scale modular LNG plant design, in: 19th International Conference and Exhibition on Liquefied Natural Gas. Shanghai, 2019.
  78. H.C. Bauer Germany, Modular design of a base load LNG plant, Int. Gas Union Res. Conf. (2011). 2818-2825. volume 1.
  79. M. Tanabea, A. Miyake, Effective implementation of inherently safer design during design phase of modularized onshore LNG projects, Chem. Eng. Trans. 48 (2016), https://doi.org/10.3303/CET1648090.
  80. J. Gao, F. You, Can modular manufacturing Be the next game-changer in shale gas supply chain design and operations for economic and environmental sustainability? ACS Sustain. Chem. Eng. 5 (2017) 10046-10071, https://doi.org/10.1021/acssuschemeng.7b02081.
  81. H. Radatz, J.M. Elischewski, M. Heitmann, G. Schembecker, C. Bramsiepe, Design of equipment modules for flexibility. https://doi.org/10.1016/j.ces.2017.04.021, 2017.
  82. J. Wang, X. Wang, W. Shou, H.Y. Chong, J. Guo, Building information modeling-based integration of MEP layout designs and constructability, Autom. ConStruct. 61 (2016) 134-146, https://doi.org/10.1016/j.autcon.2015.10.003.
  83. J.C.P. Cheng, W. Chen, K. Chen, Q. Wang, Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms, Autom. ConStruct. (2020), https://doi.org/10.1016/j.autcon.2020.103087.
  84. A.L.C. Ciribini, S. Mastrolembo Ventura, M. Paneroni, Implementation of an interoperable process to optimise design and construction phases of a residential building: a BIM Pilot Project, Autom. ConStruct. (2016), https://doi.org/10.1016/j.autcon.2016.03.005.
  85. G. Lee, J.W. Kim, Parallel vs. Sequential cascading MEP coordination strategies: a pharmaceutical building case study, Autom. ConStruct. 43 (2014) 170-179, https://doi.org/10.1016/j.autcon.2014.03.004.
  86. J. Madler, J. Rahm, I. Viedt, L. Urbas, A digital twin-concept for smart process equipment assemblies supporting process validation in modular plants, in: Computer Aided Chemical Engineering, 2022, pp. 1435-1440, https://doi.org/10.1016/B978-0-323-95879-0.50240-X.
  87. M. Mancini, G.J.L. Micheli, A. Travaglini, G. Gilardone, Oil & gas industry perception of modularization barriers and impacts, in: IEEE International Conference on Industrial Engineering and Engineering Management, 2016, pp. 1595-1599, https://doi.org/10.1109/IEEM.2016.7798146.
  88. S. Sievers, T. Seifert, M. Franzen, G. Schembecker, C. Bramsiepe, Fixed capital investment estimation for modular production plants, Chem. Eng. Sci. (2016), https://doi.org/10.1016/j.ces.2016.09.029.
  89. W. Robb Stewart, J. Gregory, K. Shirvan, Impact of modularization and site staffing on construction schedule of small and large water reactors, Nucl. Eng. Des. 397 (2022), 111922, https://doi.org/10.1016/J.NUCENGDES.2022.111922.
  90. W. Robb Stewart, K. Shirvan, Construction schedule and cost risk for large and small light water reactors, Nucl. Eng. Des. 407 (2023), 112305, https://doi.org/10.1016/J.NUCENGDES.2023.112305.
  91. Clara A. Lloyd, A. Roulstone, A methodology to determine SMR build schedule and the impact of modularisation, in: ASME (Ed.), 26th International Conference on Nuclear Engineering ICONE26, ASME, London, 2018.
  92. C.A. Lloyd, T. Roulstone, R.E. Lyons, Transport, constructability, and economic advantages of SMR modularization, Prog. Nucl. Energy 134 (2021), 103672, https://doi.org/10.1016/J.PNUCENE.2021.103672.
  93. B. Mignacca, A.H. Alawneh, G. Locatelli, Transportation of small modular reactor modules: what do the experts say?, in: International Conference on Nuclear Engineering, Proceedings, ICONE Japan Society of Mechanical Engineers, Tsukuba, Japan, 2019.
  94. European Commission, European Best Practice Guidelines for Abnormal Road Transports, Office for Official Publications of the European Communities, Luxembourg, 2008.
  95. Y. Il Lee, U.K. Lee, T. Il Kim, Modularization technology development and application for NPP in Korea, in: American Society of Mechanical Engineers, Pressure Vessels and Piping, Division (Publication) PVP, 2010, https://doi.org/10.1115/PVP2010-25533.
  96. T. Obata, A. Urashima, K. Watanabe, T. Miyahara, Advanced construction technologies for the ohma nuclear power plant reactor building of Electric Power Development Co., Ltd, in: International Conference on Nuclear Engineering, Proceedings, ICONE, 2010, https://doi.org/10.1115/ICONE18-30163.
  97. Clara A. Lloyd, A.R.M. Roulstone, The Impact of Modularisation Strategies on Small Modular Reactor Costs, Icapp 2018, 2018.
  98. A.C. Kadak, M.V. Berte, Advanced modularity design for the MIT pebble bed reactor, Nucl. Eng. Des. 236 (2006) 502-509, https://doi.org/10.1016/j.nucengdes.2005.11.018.
  99. D.Y. Jung, Y.K. Kang, C.H. You, Advanced construction methods for new nuclear power plants, in: American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP, American Society of Mechanical Engineers Digital Collection, 2010, pp. 55-59, https://doi.org/10.1115/PVP2010-25369.
  100. R.E. Lyons, A.R.M. Roulstone, Production learning in a small modular reactor supply chain, in: Proceedings of the 2018 International Congress on Advances in Nuclear Power Plants, ICAPP 2018. American Nuclear Society, 2018, pp. 1034-1041.
  101. M. Williamson, L. Townsend, Sizes of secondary plant components for modularized IRIS balance of plant design, Glob. 2003 Atoms Prosper. Updat. Eisenhowers Glob. Vis. Nucl. Energy (2003) 605-609.
  102. Uzuner, Ein Beitrag zur wissensbasierten Unterstutzung bei der Auswahl technischer Ressourcen, 2017. Hamburg.
  103. M. Hoernicke, K. Stark, A. Wittenbrink, H. Bloch, S. Hensel, A. Menschner, A. Fay, T. Knohl, L. Urbas, Automation architecture and engineering for modular process plants - approach and industrial pilot application, IFAC (2020), https://doi.org/10.1016/j.ifacol.2020.12.1966.
  104. X. Fang, L. Gu, F. Song, Definition and analysis of modularity degree of nuclear power plant construction, in: International Conference on Nuclear Engineering, Proceedings, ICONE, American Society of Mechanical Engineers (ASME), 2012, pp. 701-705, https://doi.org/10.1115/ICONE20-POWER2012-55066.
  105. M.R. Williamson, Transportable Modular Balance of Plant Study for Small Nuclear Power Plants, 2004.
  106. Q. Lu, Research and application status of the modular technology in nuclear power engineering of CGNPC, in: 21st International Conference on Nuclear Engineering Volume 1: Plant Operations, Maintenance, Engineering, Modifications, Life Cycle and Balance of Plant; Nuclear Fuel and Materials; Radiation Protection and Nuclear Technology Applications, ASME, Chengdu, 2013, V001T01A001, https://doi.org/10.1115/ICONE21-15004.
  107. Q. Lu, Y. Li, Z. Wang, Y. Luo, L. Qinwu, W. Zengchen, Research and development of 3D module design system in nuclear power engineering, in: 21st International Conference on Nuclear Engineering Volume 1: Plant Operations, Maintenance, Engineering, Modifications, Life Cycle and Balance of Plant; Nuclear Fuel and Materials; Radiation Protection and Nuclear Technology Applications, ASME, Chengdu, 2013, V001T01A004, https://doi.org/10.1115/ICONE21-15060.
  108. C.T. Smith, J.H. Hammeran, C. Lockwood, Module Fabrication Strategy for Today's Nuclear Industry, vol. 125, 2013, https://doi.org/10.1115/icone20-power2012-54818.
  109. T. Yotsuya, J. Miura, K. Murayama, A. Nakajima, J. Kawahata, Design concept of composite module for nuclear power plant construction, in: Proceedings of the International Conference on Nuclear Engineering, (ICONE12), 2004, pp. 449-452, https://doi.org/10.1115/ICONE12-49331.
  110. P. Wrigley, P. Wood, P. Stewart, R. Hall, D. Robertson, Design for plant modularisation: nuclear and SMR, in: Proceedings of 2018 ICONE Conference, vol. 3, ASME, 2018, https://doi.org/10.1115/ICONE26-81760.
  111. P. Wrigley, P. Wood, S. O'Neill, R. Hall, D. Robertson, Automated design techniques for new nuclear power plant design: Knowledge based engineering, generative design and optimisation, in: Proceedings of 2019 ICONE Conference, ASME, 2019. ISBN 9784888983051.
  112. P. Wrigley, P. Wood, P. Stewart, R. Hall, D. Robertson, Module layout optimization using a genetic algorithm in light water modular nuclear reactor power plants, Nucl. Eng. Des. 341 (2019) 100-111, https://doi.org/10.1016/j.nucengdes.2018.10.023. ISSN 0029-5493.
  113. P. Wrigley, P. Wood, S. O'Neill, R. Hall, D. Robertson, Module design layout and equipment analysis for off-site prefabrication manufacture and assembly in a small modular reactor.", in: Proceedings of 2020 ICONE Conference, vol. 3, ASME, 2020, https://doi.org/10.1115/ICONE2020-16077.
  114. P. Wrigley, P. Wood, S. O'Neill, R. Hall, D. Robertson, Off-site modular construction and design in nuclear power: a systematic literature review, Prog. Nucl. Energy 134 (2021), 103664, https://doi.org/10.1016/j.pnucene.2021.103664.
  115. P. Wrigley, P. Wood, S. O'Neill, R. Hall, S. Marr, D. Robertson, Optimal layout of modular multi-floor process plants using MILP, Computer Aided Chemical Engineering 51 (2022) 61-66, https://doi.org/10.1016/B978-0-323-95879-0.50011-4.
  116. S. O'Neill, P. Wrigley, O. Bagdasar, A mixed-integer linear programming formulation for the modular layout of three-dimensional connected systems, Math. Comput. Simulat. 201 (2022) 739-754, https://doi.org/10.1016/j.matcom.2021.09.019.
  117. K. Fujita, S. Akagi, Approach to Plant Layout Design Based on Constraint-Directed Search, NII-Electronic Libr, 1993.
  118. C.W. Lapp, M.W. Golay, Modular design and construction techniques for nuclear power plants, Nucl. Eng. Des. 172 (1997) 327-349, https://doi.org/10.1016/S0029-5493(97)00031-9.