DOI QR코드

DOI QR Code

DNA barcoding of fish diversity from Batanghari River, Jambi, Indonesia

  • Huria Marnis (Research Center for Fishery, National Research and Innovation Agency (BRIN)) ;
  • Khairul Syahputra (Research Center for Fishery, National Research and Innovation Agency (BRIN)) ;
  • Jadmiko Darmawan (Research Center for Fishery, National Research and Innovation Agency (BRIN)) ;
  • Dwi Febrianti (Research Center for Limnology and Water Resources, National Research and Innovation Agency (BRIN)) ;
  • Evi Tahapari (Research Center for Fishery, National Research and Innovation Agency (BRIN)) ;
  • Sekar Larashati (Research Center for Limnology and Water Resources, National Research and Innovation Agency (BRIN)) ;
  • Bambang Iswanto (Research Center for Fishery, National Research and Innovation Agency (BRIN)) ;
  • Erma Primanita Hayuningtyas Primanita (Research Center for Fishery, National Research and Innovation Agency (BRIN)) ;
  • Mochamad Syaifudin (Program Study of Aquaculture, Faculty of Agriculture, Sriwijaya University) ;
  • Arsad Tirta Subangkit (Research Center for Fishery, National Research and Innovation Agency (BRIN))
  • Received : 2023.10.08
  • Accepted : 2023.11.20
  • Published : 2024.02.29

Abstract

Global climate change, followed by an increase in anthropogenic activities in aquatic ecosystems, and species invasions, has resulted in a decline in aquatic organism biodiversity. The Batanghari River, Sumatra's longest river, is polluted by mercury-containing illegal gold mining waste (PETI), industrial pollution, and domestic waste. Several studies have provided evidence suggesting a decline in fish biodiversity within the Batanghari River. However, a comprehensive evaluation of the present status of biodiversity in this river is currently lacking. The species under investigation were identified through various molecular-based identification methods, as well as morphological identification, which involved the use of neighbor-joining (NJ) trees. All collected specimens were initially identified using morphological techniques and subsequently confirmed with molecular barcoding analysis. Morphological and DNA barcoding identification categorized all specimens (1,692) into 36 species, 30 genera and 16 families, representing five orders. A total of 36 DNA barcodes were generated from 30 genera using a 650-bp-long fragment of the mitochondrial cytochrome oxidase subunit I (COI) gene. Based on the Kimura two-parameter model (K2P), The minimum and maximum genetic divergences based on K2P distance were 0.003 and 0.331, respectively, and the average genetic divergence within genera, families, and orders was 0.05, 0.12, 0.16 respectively. In addition, the average interspecific distance was approximately 2.17 times higher than the mean intraspecific distance. Our results showed that the COI barcode enabled accurate fish species identification in the Batanghari River. Furthermore, the present work will establish a comprehensive DNA barcode library for freshwater fishes along Batanghari River and be significantly useful in future efforts to monitor, conserve, and manage fisheries in Indonesia.

Keywords

Acknowledgement

We express our gratitude to the local governments in Jambi province for their invaluable assistance during the process of sampling and conducting environmental monitoring in the Batanghari River. We would also like to express our gratitude to Despa Surianis, Dwi Setianingsih, Ahmad Junaidi, Surya Roza, Rulif Aziz Kusnita, Riana Yulianti, and Lukman for their valuable technical assistance provided during this study.

References

  1. Bariche M, Torres M, Smith C, Sayar N, Azzurro E, Baker R, et al. Red Sea fishes in the Mediterranean Sea: a preliminary investigation of a biological invasion using DNA barcoding. J Biogeogr. 2015;42:2363-73.  https://doi.org/10.1111/jbi.12595
  2. Becker S, Hanner R, Steinke D. Five years of FISH-BOL: brief status report. Mitochondrial DNA. 2011;22:3-9. Febrianti D, Darmawan J, Marnis H, Syahputra K, Tahapari  https://doi.org/10.3109/19401736.2010.535528
  3. E, Larashati S, et al. Assessment of spatial variations in water quality, plankton and macrozoobenthos diversity of Batanghari River, Indonesia. Aquac Aquar Conserv Legis. 2023;16:1519-30. 
  4. Felsenstein J. PHYLIP: Phylogeny Inference Package, version 36. Seattle, WA: University of Washington; 2001. 
  5. Feng C, Tang Y, Liu S, Tian F, Zhang C, Zhao K. Multiple convergent events created a nominal widespread species: Triplophysa stoliczkae (Steindachner, 1866) (Cobitoidea: Nemacheilidae). BMC Evol Biol. 2019;19:1-12.  https://doi.org/10.1186/s12862-018-1333-8
  6. Francisco SM, Lima CS, Moreira I, Shahin AAB, Faleh AB. DNA barcoding of commercially relevant marine fish species in Tunisian waters. J Mar Biol Assoc UK. 2022;102:178-85.  https://doi.org/10.1017/S0025315422000352
  7. Fricke R, Eschmeyer WN, Van der Laan R. ECoF. Eschmeyer's catalog of fishes: genera, species, references. San Francisco: California Academy of Sciences; 2022. 
  8. Froese R, Pauly D. FishBase [Internet]. 2023 [cited 2023 Aug 1]. http://www.fishbase.org 
  9. Giannetto D, Innal D. Status of endemic freshwater fish fauna inhabiting major lakes of Turkey under the threats of climate change and anthropogenic disturbances: a review. Water. 2021;13:1534. 
  10. Gillette DP, Edds DR, Jha BR, Mishra B. Thirty years of environmental change reduces local, but not regional, diversity of riverine fish assemblages in a Himalayan biodiversity hotspot. Biol Conserv. 2022;265:109427. 
  11. Godfray HCJ. Challenges for taxonomy. Nature. 2002;417:17-9.  https://doi.org/10.1038/417017a
  12. Hader DP, Banaszak AT, Villafane VE, Narvarte MA, Gonzalez RA, Walter Helbling E. Anthropogenic pollution of aquatic ecosystems: emerging problems with global implications. Sci Total Environ. 2020;713:136586. 
  13. Hinchliff CE, Smith SA. Some limitations of public sequence data for phylogenetic inference (in plants). PLOS ONE. 2014;9:e98986. 
  14. Hopkins GW, Freckleton RP. Declines in the numbers of amateur and professional taxonomists: implications for conservation. Anim Conserv Forum. 2002;5:245-249.  https://doi.org/10.1017/S1367943002002299
  15. Hui TH, Kottelat M. The fishes of the Batang Hari drainage, Sumatra, with description of six new species. Ichthyol Explor Freshw. 2009;20:13-69. 
  16. Hulley EN, Tharmalingam S, Zarnke A, Boreham DR. Development and validation of probe-based multiplex real-time PCR assays for the rapid and accurate detection of freshwater fish species. PLOS ONE. 2019;14:e0210165. 
  17. International Union for Conservation of Nature [IUCN]. The IUCN red list of threatened species. Version 2022-1 [Internet]. IUCN Red List of Threatened Species. 2022 [cited 2023 Jan 1]. https://www.iucnredlist.org/ 
  18. Kaban S, Armanto ME, Ridho MR, Hariani PL. Heavy metal (Mercury and Plumbum) accumulation of two fish species in Sipin and Teluk Lake, Jambi Province. Ecol Environ Conserv. 2020;26:1119-23. 
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111-20.  https://doi.org/10.1007/BF01731581
  20. Kottelat M. A review of the eelloaches of genus Pangio (Teleostei: Cobitidae) from the Malay Peninsula, with description of six new species. Raffles Bull Zool. 1993;41:203-49. 
  21. Kottelat M. The fishes of the inland waters of Southeast Asia: a catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves and estuaries. Raffles Bull Zool. 2013. 
  22. Krishna Krishnamurthy P, Francis RA. A critical review on the utility of DNA barcoding in biodiversity conservation. Biodivers Conserv. 2012;21:1901-19.  https://doi.org/10.1007/s10531-012-0306-2
  23. Mann PJ, Strauss J, Palmtag J, Dowdy K, Ogneva O, Fuchs M, et al. Degrading permafrost river catchments and their impact on Arctic Ocean nearshore processes. Ambio. 2022;51:439-55.  https://doi.org/10.1007/s13280-021-01666-z
  24. Melo BF, Ochoa LE, Vari RP, Oliveira C. Cryptic species in the neotropical fish genus Curimatopsis (Teleostei, Characiformes). Zool Scr. 2016;45:650-8.  https://doi.org/10.1111/zsc.12178
  25. Moran Z, Orth DJ, Schmitt JD, Hallerman EM, Aguilar R. Effectiveness of DNA barcoding for identifying piscine prey items in stomach contents of piscivorous catfishes. Environ Biol Fishes. 2016;99:161-7.  https://doi.org/10.1007/s10641-015-0448-7
  26. Panprommin D, Soontornprasit K, Tuncharoen S, Iamchuen N. The utility of DNA barcoding for the species identification of larval fish in the lower Ing river, Thailand. Turk J Fish Aquat Sci. 2020;20:671-9.  https://doi.org/10.4194/1303-2712-v20_9_02
  27. Panprommin D, Soontornprasit K, Tuncharoen S, Pithakpol S, Keereelang J. DNA barcodes for the identification of species diversity in fish from Kwan Phayao, Thailand. J AsiaPac Biodivers. 2019;12:382-9.  https://doi.org/10.1016/j.japb.2019.05.003
  28. Radocaj T, Spelic I, Vilizzi L, Povz M, Piria M. Identifying threats from introduced and translocated non-native freshwater fishes in Croatia and Slovenia under current and future climatic conditions. Glob Ecol Conserv. 2021;27:e01520. 
  29. Rainboth WJ. Fishes of the Cambodian Mekong. FAO Species Identification Field Guide for Fishery Purpose. Rome: Food and Agriculture Organization (FAO); 1996. p. 310. 
  30. Rathnasuriya MIG, Mateos-Rivera A, Skern-Mauritzen R, Wimalasiri HBU, Jayasinghe RPPK, Krakstad JO, et al. Composition and diversity of larval fish in the Indian Ocean using morphological and molecular methods. Mar Biodivers. 2021;51:1-15.  https://doi.org/10.1007/s12526-021-01169-w
  31. Sheraliev B, Peng Z. Molecular diversity of Uzbekistan's fishes assessed with DNA barcoding. Sci Rep. 2021;11:16894. 
  32. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Bio Evol. 2021;38(7):3022-7.  https://doi.org/10.1093/molbev/msab120
  33. Tapilatu RF, Tururaja TS, Siriyadi, Kusuma AB. Molecular phylogeny reconstruction of grouper (Serranidae: Epinephelinae) at Northern part of Bird's Head Seascape - Papua inferred from COI gene. Fish Aquat Sci. 2021;24:181-90.  https://doi.org/10.47853/FAS.2021.e18
  34. Tickner D, Opperman JJ, Abell R, Acreman M, Arthington AH, Bunn SE, et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. BioScience. 2020;70:330-42.  https://doi.org/10.1093/biosci/biaa002
  35. Tillett BJ, Field IC, Bradshaw CJA, Johnson G, Buckworth RC, Meekan MG, et al. Accuracy of species identification by fisheries observers in a north Australian shark fishery. Fish Res. 2012;127-128:109-15.  https://doi.org/10.1016/j.fishres.2012.04.007
  36. van der Heyde M, Bunce M, Wardell-Johnson G, Fernandes K, White NE, Nevill P. Testing multiple substrates for terrestrial biodiversity monitoring using environmental DNA metabarcoding. Mol Ecol Resour. 2020;20:732-45.  https://doi.org/10.1111/1755-0998.13148
  37. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN. DNA barcoding Australia's fish species. Philos Trans R Soc B Biol Sci. 2005;360:1847-57.  https://doi.org/10.1098/rstb.2005.1716
  38. Wiens JJ. Climate-related local extinctions are already widespread among plant and animal species. PLOS Biol. 2016;14:e2001104. 
  39. Worm B, Lotze HK. Marine biodiversity and climate change. In: Letcher T, editor. Climate change: observed impacts on planet Earth. Amsterdam: Elsevier; 2021. p. 445-64.