• Title/Summary/Keyword: Fish biodiversity

Search Result 154, Processing Time 0.023 seconds

Fish Species Collected by the Fish Collection Project from the Southern Sea of Korea during 2010-2012 (2010-2012년 어류표본사업에서 채집된 한국 남해 어류 종 목록)

  • Moon, Dae Yeon;Jeong, Hyeon Gyeong;Myoung, Jung-Goo;Choi, Jung Hwa;Kwun, Hyuck Joon;Back, Jin Wook;Hong, Sung Youl;Kim, Seong Yong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.4
    • /
    • pp.507-528
    • /
    • 2015
  • The Fish Collection Project collected 356 fish species from the Southern Sea of Korea during 2010-2012, 55 more than previously collected. The fishes belonged to 3 classes, 29 orders and 128 families. The 5 dominant orders, Perciformes, Scorpaeniformes, Pleuronectiformes, Tetraodontiformes, and Clupeiformes, accounted for ~80% of the identified species. Additionally, 126 species were collected from the Southern Sea for the first time, while 85 species that had been found in previous collections were not seen. The species variety of fish in the Southern Sea may be influenced by its unique oceanographic conditions such as increased water temperatures in coastal areas, so regular surveys would assist our understanding of the fish community. We suggest that various collection methods, including diving, be used to collect fish species inhabiting rocky shore or deep-sea areas, where commercial fishing gear is difficult to deploy.

DNA barcoding of fish diversity from Batanghari River, Jambi, Indonesia

  • Huria Marnis;Khairul Syahputra;Jadmiko Darmawan;Dwi Febrianti;Evi Tahapari;Sekar Larashati;Bambang Iswanto;Erma Primanita Hayuningtyas Primanita;Mochamad Syaifudin;Arsad Tirta Subangkit
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.2
    • /
    • pp.87-99
    • /
    • 2024
  • Global climate change, followed by an increase in anthropogenic activities in aquatic ecosystems, and species invasions, has resulted in a decline in aquatic organism biodiversity. The Batanghari River, Sumatra's longest river, is polluted by mercury-containing illegal gold mining waste (PETI), industrial pollution, and domestic waste. Several studies have provided evidence suggesting a decline in fish biodiversity within the Batanghari River. However, a comprehensive evaluation of the present status of biodiversity in this river is currently lacking. The species under investigation were identified through various molecular-based identification methods, as well as morphological identification, which involved the use of neighbor-joining (NJ) trees. All collected specimens were initially identified using morphological techniques and subsequently confirmed with molecular barcoding analysis. Morphological and DNA barcoding identification categorized all specimens (1,692) into 36 species, 30 genera and 16 families, representing five orders. A total of 36 DNA barcodes were generated from 30 genera using a 650-bp-long fragment of the mitochondrial cytochrome oxidase subunit I (COI) gene. Based on the Kimura two-parameter model (K2P), The minimum and maximum genetic divergences based on K2P distance were 0.003 and 0.331, respectively, and the average genetic divergence within genera, families, and orders was 0.05, 0.12, 0.16 respectively. In addition, the average interspecific distance was approximately 2.17 times higher than the mean intraspecific distance. Our results showed that the COI barcode enabled accurate fish species identification in the Batanghari River. Furthermore, the present work will establish a comprehensive DNA barcode library for freshwater fishes along Batanghari River and be significantly useful in future efforts to monitor, conserve, and manage fisheries in Indonesia.

Assesment of Protected Mt. Seorak Areas in Korea Applied by the Key Biodiversity Areas(KBAs) (중요생물다양성지역(KBAs) 기준 적용을 통한 설악산 보호구역 평가)

  • Sung, Jung-Won;Kang, Shin-Gu;Kim, Keun-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.1
    • /
    • pp.37-48
    • /
    • 2020
  • This study was aimed to design core areas applied by the global conservation criteria to promote the public awareness to the protected areas and the value cognition of the Key Biodiversity Areas (KBAs), targeting the Mt Seorak, according to the designation of globally important biodiversity areas. As a method for carrying out this study, the biota were cataloged through literature reviews and field trips. With applied by the Global Red List criteria of the International Union for Conservation of Nature (IUCN), only nine species were categorized in the studied area; plants were classified into six species as follows: Megaleranthis saniculifolia ohwi, Bupleurum euphorbioides Nakai, Hanabusaya asiatica Nakai, Thuja koraiensis Nakai, Leontopodium leiolepis Nakai, Androsace cortusaefolia Nakai, fish was classified one species as follow: Pungitius sinensis Tanaka, and the mammal was classified as two species as follows: Hydropotes inermis, Naemorhedus caudatus. According to the occupation area (EoO, Extent of Occurrence) and Minimum Viable Population(MVP), the size of protected area was 234.56㎢ for plants, 235.07㎢ for mammals, and 0.14㎢ for fish, and the Key Biodiversity Area (KBA) of Mt. Seolak suggested as 286.72㎢.

Strategies for Conservation and Restoration of Freshwater Fish Species in Korea (한국 담수어류의 보존 및 복원 전략)

  • Kang, Eon-Jong;Bang, In-Chul;Yang, Hyun
    • Korean Journal of Ichthyology
    • /
    • v.21 no.sup1
    • /
    • pp.29-37
    • /
    • 2009
  • The tiny fragment of freshwater body is providing home for huge biodiversity and resources for the existence of human. The competing demand for freshwater have been increased rapidly and it caused the declination of biodiversity in recent decades. Unlike the natural process of extinction in gradual progress, the current species extinction is accelerated by human activity. As a result many fish species are already extinct or alive only in captivity in the world and about fifty eight animal species are in endangered in Korea including eighteen freshwater species. Conservation of biodiversity is the process by which the prevention of loss or damage is attained, and is often associated with management of the natural environment. The practical action is classified into in-situ, or ex-situ depending on the location of the conservation effort. Recovery means the process by which the status of endangerment is improved to persist in the wild by re-introduction of species from ex-situ conservation population into nature or translocation of some population. However there are a lot of restrictions to complete it and successful results are known very rare in case. In this article the authors explore some strategies for conservation and restoration of freshwater fish species conducted in Korea for few years. The major causes are discussed in relation with the decline of freshwater fish diversity during few decades and some strategies are evaluated to advance the process of conservation. A study on the Korean bullhead, Pseudobagrus brevicorpus, is introduced as a case for ex-situ conservation and restoration in freshwater ecosystem.

Fish Distribution and Management Strategy for Improve Biodiversity in Created Wetlands Located at Nakdong River Basin (낙동강 신규조성 습지의 어류 분포와 종다양성 증진을 위한 관리방안)

  • Choi, Jong Yun;Kim, Seong-Ki;Park, Jung-Soo;Kim, Jeong-Cheol;Yoon, Jong-Hak
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.3
    • /
    • pp.274-288
    • /
    • 2018
  • This study investigated the environmental factors and fish assemblage in 42 wetlands between spring and autumn of 2017 to evaluate the fish distribution and deduce the management strategy for improving biodiversity in created wetlands located at the Nakdong River basin. The investigation identified a total of 30 fish species and found that the most of wetlands were dominated by exotic fishes such as Micropterus salmoides and Lepomis macrochirus. Fish species such as Rhinogobius brunneus, Opsariichthys uncirostris amurensis, Zacco platypus were less abundant in the area with high density of Micropterus salmoides (static area) because they preferred the environment with active water flow. The pattern analysis of fish distribution in each wetland using the self-organizing map (SOM) showed a total of 24 variables (14 fish species and 10 environmental variables). The comparison of variables indicated that the distribution of fish species varied according to water depth and plant cover rate and was less affected by water temperature, pH, and dissolved oxygen. The plant cover rate was strongly associated with high fish density and species diversity. However, wetlands with low plant biomass had diversity and density of fish species. The results showed that the microhabitat structure, created by macrophytes, was an important factor in determining the diversity and abundance of fish communities because the different species compositions of macrophytes supported diverse fish species in these habitats. Based on the results of this study, we conclude that macrophytes are the key components of lentic freshwater ecosystem heterogeneity, and the inclusion of diverse plant species in wetland construction or restoration schemes will result in ecologically healthy food webs.

Potential risky exotic fish species, their ecological impacts and potential reasons for invasion in Korean aquatic ecosystems

  • Atique, Usman;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.41-53
    • /
    • 2022
  • Background: Due to the rapidly changing climatic conditions, South Korea faces the grand challenge of exotic species. With the increasing human movement, the influx of alien species to novel regions is prevalent across the globe. The latest research suggests that it is easy to prevent the introduction and establishment of alien species rather than controlling their spread and eradication. Like other countries, the Korean Ministry of Environment released a list (in 2018) of 45 potential risky exotic fish species considered likely to be invasive candidate fish species if they ever succeed in entering the Korean aquatic ecosystems. Results: The investigation into the invasion suitability traits showed that potential risky fish species could utilize those features in becoming invasive once they arrive in the Korean aquatic ecosystems. If the novel species establish viable populations, they are likely to incur higher economic costs, damage the native aquatic fauna and flora, and jeopardize the already perilled species. Furthermore, they can damage the installed infrastructure, decline overall abundance and biodiversity, and disturb the ecosystem services. Here we reviewed the list of fish species concerning their family, native origin, preferred aquatic biomes, main food items, current status in Korea, and potential threats to humans and the ecosystems. Data shows that most species are either already designated as invasive in the neighboring counties, including Japan, Vietnam, Thailand, and China, or originate from these countries. Such species have a higher climate match with the Korean territories. Conclusions: Therefore, it is exceptionally essential to study their most critical features and take regulatory measures to restrict their entry. The incoming fish species must be screened before letting them in the country in the future. The regulatory authorities must highlight the threatening traits of such species and strictly monitor their entrance. Detailed research is required to explore the other species, especially targeting the neighboring countries fish biodiversity, having demonstrated invasive features and matching the Korean climate.

A Review of the Korean Names for Imported Fish (수입 어류의 국명 재검토)

  • Lee, Woo Jun;Kim, Jin-Koo;Kim, Yeonghye
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.1
    • /
    • pp.51-60
    • /
    • 2022
  • In Korea, the volume of imported fish for human consumption has been dramatically increasing every year. However, many Koreans are unable to distinguish imported fish from our domestic species. To reduce confusion and minimize the negative impacts on consumers, we reviewed the names of 100 imported fish species. We suggest new Korean names for 22 imported fish species. We also suggest altering the Korean names for three imported fish species. Finally, we suggest four novel ways to ensure the systematic and effective management of imported fish species.

A Microscopic Study on the Egg Envelope of an Endemic Korean Fish, Coreoleuciscus splendidus, Cyprinidae, Teleostei

  • Kim, Chi-Hong;Park, Jong-Sung;Kim, Jae-Goo;Park, Jong-Young
    • Applied Microscopy
    • /
    • v.44 no.3
    • /
    • pp.96-99
    • /
    • 2014
  • Study on the egg envelope of an endemic Korean freshwater fish, Coreoleuciscus splendidus was carried out by light and scanning electron microscopes during its spawning season. The egg envelope on the entire egg is filled with plenty of long cylinder-like villi before and after fertilization. The fertilized eggs consist of two regions, the attaching and non-attaching parts to stick to the substrates. The villi covering the fertilized eggs have three kinds of villi in its length: 1) normal- sized villi of an average of $10.6{\mu}m$ on the non-attachment part; 2) longer and more slender villi over about $20{\mu}m$ on the attachment part, at least being two times longer than those of the non-attachment; and 3) shorter villi under about $5.0{\mu}m$ around the micropyle, with half the size of the non-attachment villi. The micropyle rotated in a counter-clockwise direction with five pieces of the ridges.

DNA Barcoding of Fish, Insects, and Shellfish in Korea

  • Kim, Dae-Won;Yoo, Won-Gi;Park, Hyun-Chul;Yoo, Hye-Sook;Kang, Dong-Won;Jin, Seon-Deok;Min, Hong-Ki;Paek, Woon-Kee;Lim, Jeong-Heui
    • Genomics & Informatics
    • /
    • v.10 no.3
    • /
    • pp.206-211
    • /
    • 2012
  • DNA barcoding has been widely used in species identification and biodiversity research. A short fragment of the mitochondrial cytochrome c oxidase subunit I (COI) sequence serves as a DNA bio-barcode. We collected DNA barcodes, based on COI sequences from 156 species (529 sequences) of fish, insects, and shellfish. We present results on phylogenetic relationships to assess biodiversity the in the Korean peninsula. Average GC% contents of the 68 fish species (46.9%), the 59 shellfish species (38.0%), and the 29 insect species (33.2%) are reported. Using the Kimura 2 parameter in all possible pairwise comparisons, the average interspecific distances were compared with the average intraspecific distances in fish (3.22 vs. 0.41), insects (2.06 vs. 0.25), and shellfish (3.58 vs. 0.14). Our results confirm that distance-based DNA barcoding provides sufficient information to identify and delineate fish, insect, and shellfish species by means of all possible pairwise comparisons. These results also confirm that the development of an effective molecular barcode identification system is possible. All DNA barcode sequences collected from our study will be useful for the interpretation of species-level identification and community-level patterns in fish, insects, and shellfish in Korea, although at the species level, the rate of correct identification in a diversified environment might be low.

A study on the variation of the Korean marine ecosystem through biodiversity attributes (생물다양성 특성 분석을 통한 우리나라 주변 해양생태계 변화 연구)

  • Jong Hee LEE;Young Il SEO;Sang Chul YOON;Heejoong KANG;Ji-Hoon CHOI;Min-Je CHOI;Jinwoo GIM
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.4
    • /
    • pp.315-327
    • /
    • 2023
  • In the last five decades, there has been a consistent decline in the total catch of fisheries in the Korean jurisdiction since the peak in 1986. The decline in catch slowed and slightly rebounded in the 2000s, but changed back to a decline in the 2010s. As indicators that can identify changes in the marine ecosystem, trophic level (TL), biodiversity index (H'), and the ratio between pelagic fish and demersal fish (P/D) were analyzed by each local marine ecosystem. There were some different changes in each local marine ecosystem, but the mean TL and H' decreased and P/D increased in general in Korean waters. Demersal fish, which were dominant in the 1970s and 1980s, declined, and small pelagic fish and cephalopods have dominantly changed since the 1990s. However, these changes are not simple, and they are fluctuating in complex ways relating to each marine ecosystem and the timing. It is believed that changes in marine ecosystems in Korean waters are likely caused by a combination of fisheries and climate change. The ecosystem indicators reflected a change in the total catch, a sharp drop in catch of demersal fish, and increasing catch of pelagic fish since the mid-1980s.