DOI QR코드

DOI QR Code

Horizontal and vertical movement patterns of yellowtail (Seriola quinqueradiata) in the East Sea of Korea

  • Jikang Park (Division of Glacial Environment Research, Korea Polar Research Institute) ;
  • Won Young Lee (Division of Life Sciences, Korea Polar Research Institute) ;
  • Seungjae Baek (Maritime ICT & Mobility Research Department, Korea Institute of Ocean Science & Technology) ;
  • Sung-Yong Oh (Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology)
  • Received : 2023.10.08
  • Accepted : 2023.11.17
  • Published : 2024.02.29

Abstract

The bio-logging method could be a valuable approach to studying the underwater movement of marine fish. We investigated the horizontal and vertical movement patterns of two yellowtails Seriola quinqueradiata weighing 8.7 kg and 9.5 kg with a popup satellite archival tag from October 2020 to January 2021 in the East Sea of Korea. Our results showed that a yellowtail migrated northward in October and November, and then shifted southward in mid-December. The average swimming depth and temperature of the fish monitored over 82 days were 24.9 ± 9.3 m (average ± SD) and 16.5 ± 1.9℃, respectively, and the total traveled distance was 1,172.4 km. The fish swam significantly deeper during the daytime (33.70 ± 14.80 m) than at nighttime (20.65 ± 8.44 m) from November to December (p < 0.05). These results suggest that the horizontal migratory route of yellowtails in accordance with the East Korea Warm Current which is the main branch of Tsushima Warm Current in the fall and early winter seasons, and showed significant diel vertical movement patterns from November to December.

Keywords

Acknowledgement

We thank the relevant staff at Korea Institute of Ocean Science & Technology for producing data.

References

  1. Alabia ID, Dehara M, Saitoh SI, Hirawake T. Seasonal habitat patterns of Japanese common squid (Todarodes pacificus) inferred from satellite-based species distribution models. Remote Sens. 2016;8:921. 
  2. Andrzejaczek S, Vely M, Jouannet D, Rowat D, Fossette S. Regional movements of satellite-tagged whale sharks Rhincodon typus in the Gulf of Aden. Ecol Evol. 2021;11:4920-34.  https://doi.org/10.1002/ece3.7400
  3. Bang M, Sohn D, Kim JJ, Choi W, Jang CJ, Kim C. Future changes in the seasonal habitat suitability for anchovy (Engraulis japonicus) in Korean waters projected by a maximum entropy model. Front Mar Sci. 2022;9:922020. 
  4. Basson M, Bravington MV, Hartog JR, Patterson TA. Experimentally derived likelihoods for light-based geolocation. Methods Ecol Evol. 2016;7:980-9.  https://doi.org/10.1111/2041-210X.12555
  5. Belkin IM. Rapid warming of large marine ecosystems. Prog Oceanogr. 2009;81:207-13.  https://doi.org/10.1016/j.pocean.2009.04.011
  6. Brownscombe JW, Ledee EJI, Raby GD, Struthers DP, Gutowsky LFG, Nguyen VM, et al. Conducting and interpreting fish telemetry studies: considerations for researchers and resource managers. Rev Fish Biol Fish. 2019;29:369-400.  https://doi.org/10.1007/s11160-019-09560-4
  7. Choi K, Lee CI, Hwang K, Kim SW, Park JH, Gong Y. Distribution and migration of Japanese common squid, Todarodes pacificus, in the southwestern part of the East (Japan) Sea. Fish Res. 2008;91:281-90.  https://doi.org/10.1016/j.fishres.2007.12.009
  8. Chung H, Lee J, Lee WY. A review: marine bio-logging of animal behaviour and ocean environments. Ocean Sci J. 2021;56:117-31.  https://doi.org/10.1007/s12601-021-00015-1
  9. Coelho R, Fernandez-Carvalho J, Santos MN. Habitat use and diel vertical migration of bigeye thresher shark: overlap with pelagic longline fishing gear. Mar Environ Res. 2015;112:91-9.  https://doi.org/10.1016/j.marenvres.2015.10.009
  10. Crossin GT, Heupel MR, Holbrook CM, Hussey NE, Lowerre-Barbieri SK, Nguyen VM, et al. Acoustic telemetry and fisheries management. Ecol Appl. 2017;27:1031-49.  https://doi.org/10.1002/eap.1533
  11. Dong CM, Lee MN, Kim EM, Park JY, Kim GD, Noh JK. Development and genetic diversity analysis of microsatellite markers using next-generation sequencing in Seriola quinqueradiata. J Life Sci. 2020;30:291-7. 
  12. Dypvik E, Klevjer TA, Kaartvedt S. Inverse vertical migration and feeding in glacier lanternfish (Benthosema glaciale). Mar Biol. 2012a;159:443-53.  https://doi.org/10.1007/s00227-011-1822-4
  13. Dypvik E, Rostad A, Kaartvedt S. Seasonal variations in vertical migration of glacier lanternfish, Benthosema glaciale. Mar Biol. 2012b;159:1673-83.  https://doi.org/10.1007/s00227-012-1953-2
  14. Furey NB, Armstrong JB, Beauchamp DA, Hinch SG. Migratory coupling between predators and prey. Nat Ecol Evol. 2018;2:1846-53.  https://doi.org/10.1038/s41559-018-0711-3
  15. Furukawa S, Kozuka A, Tsuji T, Kubota H. Horizontal and vertical movement of yellowtails Seriola quinqueradiata during summer to early winter recorded by archival tags in the northeastern Japan Sea. Mar Ecol Prog Ser. 2020;636:139-56.  https://doi.org/10.3354/meps13226
  16. Hanselman DH, Heifetz J, Echave KB, Dressel SC. Move it or lose it: movement and mortality of sablefish tagged in Alaska. Can J Fish Aquat Sci. 2014;72:238-51.  https://doi.org/10.1139/cjfas-2014-0251
  17. Hays GC. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia. 2003;503:163-70.  https://doi.org/10.1023/B:HYDR.0000008476.23617.b0
  18. Hill RD, Braun MJ. Geolocation by light level: the next step: latitude. In: Electronic tagging and tracking in marine fisheries. In: Proceedings of the Symposium on Tagging and Tracking Marine Fish with Electronic Devices; Dordrecht: Netherlands. 
  19. Hussey NE, Kessel ST, Aarestrup K, Cooke SJ, Cowley PD, Fisk AT, et al. Aquatic animal telemetry: a panoramic window into the underwater world. Science. 2015;348:1255642. 
  20. Ino S, Nitta A, Kohno N, Tsuji T, Okuno J, Yamamoto T. Migration of the adult yellowtail (Seriola quinqueradiata) as estimated by archival tagging experiments in the Tsushima warm current. Bull Japanese Soc Fish Oceanogr. 2008;72:92-100. 
  21. Jeong JM, Kim HY, Cha HK, Hwang KS. Diet composition of juvenile and young yellow tail, Seriola quinqueradiata in the coastal waters of South Sea, Korea. In: Proceedings of Conference of the Korean Federation of Fisheries Science and Technology Societies; 2016; Busan, Korea. 
  22. Jung S, Pang IC, Lee J, Choi I, Cha HK. Latitudinal shifts in the distribution of exploited fishes in Korean waters during the last 30 years: a consequence of climate change. Rev Fish Biol Fisheries. 2014;24:443-62.  https://doi.org/10.1007/s11160-013-9310-1
  23. Kawabata A, Yatsu A, Ueno Y, Suyama S, Kurita Y. Spatial distribution of the Japanese common squid, Todarodes pacificus, during its northward migration in the western North Pacific Ocean. Fish Oceanogr. 2006;15:113-24.  https://doi.org/10.1111/j.1365-2419.2006.00356.x
  24. Kim C, Yang J, Kang S, Lee SJ, Kang S. Tracking of yellowtail Seriola quinqueradiata migration using pop-up satellite archival tag (PSAT) and oceanic environments data. Korean J Fish Aquat Sci. 2021;54:787-97. 
  25. Lee EY, Park KA. Change in the recent warming trend of sea surface temperature in the East Sea (Sea of Japan) over decades (1982-2018). Remote Sens. 2019;11:2613. 
  26. Lee SJ, Go YB. Winter warming and long-term variation in catch of yellowtail (Seriola quinqueradiata) in the South Sea, Korea. Korean J Ichthyol. 2006;18:319-28. 
  27. Lenoir J, Bertrand R, Comte L, Bourgeaud L, Hattab T, Murienne J, et al. Species better track climate warming in the oceans than on land. Nat Ecol Evol. 2020;4:1044-59.  https://doi.org/10.1038/s41559-020-1198-2
  28. Lowerre-Barbieri SK, Kays R, Thorson JT, Wikelski M. The ocean's movescape: fisheries management in the bio-logging decade (2018-2028). ICES J Mar Sci. 2019;76:477-88.  https://doi.org/10.1093/icesjms/fsy211
  29. Mei Y, Sun B, Li D, Yu H, Qin H, Liu H, et al. Recent advances of target tracking applications in aquaculture with emphasis on fish. Comput Electron Agric. 2022;201:107335. 
  30. Oh SY, Jeong YK. Effects of external pop-up satellite archival tag (PSAT) tagging method on blood indices and PSAT attachment efficiency of yellowtail Seriola quinqueradiata. Korean J Fish Aquat Sci. 2021;54:38-45. 
  31. Pedersen MW, Patterson TA, Thygesen UH, Madsen H. Estimating animal behavior and residency from movement data. Oikos. 2011;120:1281-90.  https://doi.org/10.1111/j.1600-0706.2011.19044.x
  32. Preti A, Kohin S, Dewar H, Ramon D. Feeding habits of the bigeye thresher shark (Alopias superciliosus) sampled from the California-based drift gillnet fishery. Calif Coop Ocean Fish Investig Rep. 2008;49:202-11. 
  33. Sassa C, Takahashi M, Konishi Y, Yoshimasa A, Tsukamoto Y. The rapid expansion of yellowtail (Seriola quinqueradiata) spawning ground in the East China Sea is linked to increasing recruitment and spawning stock biomass. ICES J Mar Sci. 2020;77:581-92.  https://doi.org/10.1093/icesjms/fsz200
  34. Seyednasrollah B. Solrad: to calculate solar radiation and related variables based on location, time and topographical conditions [Internet]. R Package Version 1.0.0. 2018 [cited 2023 Oct 8]. https://cran.r-project.org/web/packages/solrad/index.html 
  35. Sicuro B, Luzzana U. The state of Seriola spp. other than yellowtail (S. quinqueradiata) farming in the world. Rev Fish Sci Aquac. 2016;24:314-25.  https://doi.org/10.1080/23308249.2016.1187583
  36. Stevens JD, Bradford RW, West GJ. Satellite tagging of blue sharks (Prionace glauca) and other pelagic sharks off eastern Australia: depth behaviour, temperature experience and movements. Mar Biol. 2010;157:575-91.  https://doi.org/10.1007/s00227-009-1343-6
  37. Tian Y, Kidokoro H, Watanabe T, Igeta Y, Sakaji H, Ino S. Response of yellowtail, Seriola quinqueradiata, a key large predatory fish in the Japan Sea, to sea water temperature over the last century and potential effects of global warming. J Mar Syst. 2012;91:1-10.  https://doi.org/10.1016/j.jmarsys.2011.09.002
  38. Tian Y, Kidokoro H, Watanabe T, Iguchi N. The late 1980s regime shift in the ecosystem of Tsushima warm current in the Japan/East Sea: evidence from historical data and possible mechanisms. Prog Oceanogr. 2008;77:127-45.  https://doi.org/10.1016/j.pocean.2008.03.007
  39. van Haren H, Compton TJ. Diel vertical migration in deep sea plankton is finely tuned to latitudinal and seasonal day length. PLOS ONE. 2013;8:e64435. 
  40. Wildlife Computers. MiniPAT user guide [Internet]. 2012 [cited 2023 May 05]. https://www.wildlifecomputers.com/MiniPAT-User-Guide1.pdf