DOI QR코드

DOI QR Code

A Preliminary Study on Direct Ethanol SOFC for Marine Applications

  • Bo Rim Ryu (Department of Marine System Engineering, Korea Maritime and Ocean University) ;
  • To Thi Thu Ha (Department of Marine System Engineering, Korea Maritime and Ocean University) ;
  • Hokeun Kang (Division of Coast Guard Studies, Korea Maritime and Ocean University)
  • 투고 : 2023.11.02
  • 심사 : 2024.02.08
  • 발행 : 2024.04.30

초록

This research presents an innovative integrated ethanol solid oxide fuel cell (SOFC) system designed for applications in marine vessels. The system incorporates an exhaust gas heat recovery mechanism. The high-temperature exhaust gas produced by the SOFC is efficiently recovered through a sequential process involving a gas turbine (GT), a regenerative system, steam Rankine cycles, and a waste heat boiler (WHB). A comprehensive thermodynamic analysis of this integrated SOFC-GT-SRC-WHB system was performed. A simulation of this proposed system was conducted using Aspen Hysys V12.1, and a genetic algorithm was employed to optimize the system parameters. Thermodynamic equations based on the first and second laws of thermodynamics were utilized to assess the system's performance. Additionally, the exergy destruction within the crucial system components was examined. The system is projected to achieve an energy efficiency of 58.44% and an exergy efficiency of 29.43%. Notably, the integrated high-temperature exhaust gas recovery systems contribute significantly, generating 1129.1 kW, which accounts for 22.9% of the total power generated. Furthermore, the waste heat boiler was designed to produce 900.8 kg/h of superheated vapor at 170 ℃ and 405 kP a, serving various onboard ship purposes, such as heating fuel oil and accommodations for seafarers and equipment.

키워드

과제정보

This research is the winner of the Marine Fisheries Future Risk Paper Contest sponsored by the Korea Maritime Institute(KMI). This research was supported by "Development and demonstration of ammonia fueled engine for medium/large sized vessels" funded by the Ministry of Trade, Industry and Energy(MOTIE, Korea) (RS-2023-00285272).

참고문헌

  1. Al-Hamed, K. H. M. and Dincer, I.(2021), "A novel ammonia solid oxide fuel cell-based powering system with on-board hydrogen production for clean locomotives", Energy, Vol. 220, doi: 10.1016/j.energy.2021.119771.
  2. Badwal, S. P. S., Giddey, S., Kulkarni, A., Goel, J. and Basu, S.(2015), "Direct ethanol fuel cells for transport and stationary applications - A comprehensive review," Applied Energy, Vol. 145, pp. 80-103, doi: 10.1016/j.apenergy.2015.02.002.
  3. Barelli, L., Bidini, G. and Cinti, G.(2020), "Operation of a solid oxide fuel cell based power system with ammonia as a fuel: Experimental test and system design", Energies, Vol. 13, No. 23, doi: 10.3390/en13236173.
  4. Chitgar, N. and Moghimi, M.(2020), "Design and evaluation of a novel multi-generation system based on SOFC-GT for electricity, fresh water and hydrogen production", Energy, Vol. 197, doi: 10.1016/j.energy.2020.117162.
  5. Cinti. G. and Desideri, U.(2015), "SOFC fuelled with reformed urea", Applied Energy, Vol. 154, pp. 242-253, doi: 10.1016/j.apenergy.2015.04.126.
  6. Cordaro, P. G., Braga, B. L., Corotti, D., Gallego, A. G. and Silveira, J. L.(2023), "Electricity and hydrogen production by cogeneration system applied in a fuel station in Brazil: Energy analysis of a combined SOFC and ethanol steam reforming model", Fuel, Vol. 356, doi: 10.1016/j.fuel.2023.129615.
  7. Dhahad, H. A., S. Ahmadi, H. A., Dahari, M., Ghaebi,H. and Parikhani, T.(2020), "Energy, exergy, and exergoeconomic evaluation of a novel CCP system based on a solid oxide fuel cell integrated with absorption and ejector refrigeration cycles", Thermal Science and Engineering Progress, Vol. 21, pp. 100755, doi: 10.1016/j.tsep.2020.100755.
  8. Dogdibegovic, E., Fukuyama, Y. and Tucker, M. C.(2020), "Ethanol internal reforming in solid oxide fuel cells: A path toward high performance metal-supported cells for vehicular applications", Journal of Power Sources, Vol. 449, pp. 1-25, doi: 10.1016/j.jpowsour.2019.227598.
  9. Eveloy, V., Rodgers, P. and Qiu, L.(2016), "Integration of an atmospheric solid oxide fuel cell - gas turbine system with reverse osmosis for distributed seawater desalination in a process facility", Energy Conversion and Management, Vol. 126, pp. 944-959, doi: 10.1016/j.enconman.2016.08.026.
  10. Ezzat, M. F. and Dincer, I.(2020), "Energy and exergy analyses of a novel ammonia combined power plant operating with gas turbine and solid oxide fuel cell systems", Energy, Vol. 194, doi: 10.1016/j.energy.2019.116750.
  11. Fuerte, A., Valenzuela, R. X., Escudero, M. J. and Daza, L.(2009), "Ammonia as efficient fuel for SOFC", Journal of Power Sources, Vol. 192, No. 1, pp. 170-174, doi: 10.1016/j.jpowsour.2008.11.037.
  12. Gholamian E. and Zare, V.(2016), "A comparative thermodynamic investigation with environmental analysis of SOFC waste heat to power conversion employing Kalina and Organic Rankine Cycles", Energy Conversion and Management, Vol. 117, pp. 150-161, doi: 10.1016/j.enconman.2016.03.011.
  13. Gomes. R. S. and De Bortoli, A. L.(2016), "A three-dimensional mathematical model for the anode of a direct ethanol fuel cell," Applied Energy, Vol. 183, pp. 1292-1301, doi: 10.1016/j.apenergy.2016.09.083.
  14. Hansson, J., Brynolf, S., Fridell, E. and Lehtveer, M.(2020), "The potential role of ammonia as marine fuel-based on energy systems modeling and multicriteria decision analysis" Sustainability, Vol. 12, No. 8, pp. 10-14, doi: 10.3390/SU12083265.
  15. International Maritime Organzation(2018), Adoption of the Initial IMO Strategy on Reduction of GHG Emissions from Ships.
  16. Lee, Y. H.(2019), "Thermo-economic analysis of a novel regasification system with liquefied-natural-gas cold-energy", International Journal of Refrigeration, Vol. 101, pp. 218-229, doi: 10.1016/j.ijrefrig.2019.03.022.
  17. Liu, Y., Han, J. and You, H.(2019), "Performance analysis of a CCHP system based on SOFC/GT/CO2 cycle and ORC with LNG cold energy utilization", International Jounal of Hydrogen Energy, Vol. 44, No. 56, pp. 29700-29710, doi: 10.1016/j.ijhydene.2019.02.201.
  18. Ma, Q., Peng, R. R., Tian, L. and Meng, G.(2006), "Direct utilization of ammonia in intermediate-temperature solid oxide fuel cells", Electrochem. commun., Vol. 8, No. 11, pp. 1791-1795, doi: 10.1016/j.elecom.2006.08.012.
  19. Mehrpooya, M., Dehghani, H. and Ali Moosavian, S. M.(2015), "Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system", Journal of Power Sources, Vol. 306, pp. 107-123, doi: 10.1016/j.jpowsour.2015.11.103.
  20. Meng, T., Cui, D., Ji, Y., Cheng, M. and Tu, B.(2022), "ScienceDirect Optimization and efficiency analysis of methanol SOFC-PEMFC hybrid system", International Jounal of Hydrogen Energy, doi: 10.1016/j.ijhydene.2022.06.102.
  21. Nobrega, S. D., Galesco, M. V., Girona, K., de Florio, D. Z., Steil, M. C., Georges, S. and Fonseca, F. C.(2012), "Direct ethanol solid oxide fuel cell operating in gradual internal reforming," J. Power Sources, Vol. 213, pp. 156-159, doi: 10.1016/j.jpowsour.2012.03.104.
  22. Razmi, A. R. and Janbaz, M.(2020), "Exergoeconomic assessment with reliability consideration of a green cogeneration system based on compressed air energy storage (CAES)", Energy Conversion and Management, Vol. 204, doi: 10.1016/j.enconman.2019.112320.
  23. Singh, D. V. and Pedersen, E.(2016), "A review of waste heat recovery technologies for maritime applications," Energy Conversion and Management, Vol. 111, pp. 315-328, doi: 10.1016/j.enconman.2015.12.073.
  24. Song, M., Zhuang, Y., Zhang, L., Li, W., Du, J. and Shen, S.(2021), "Thermodynamic performance assessment of SOFC-RC-KC system for multiple waste heat recovery", Energy Conversion and Management, Vol. 245, doi: 10.1016/j.enconman.2021.114579.
  25. Song, J. and wei Gu, C.(2015), "Performance analysis of a dual-loop organic Rankine cycle (ORC) system with wet steam expansion for engine waste heat recovery", Applied Energy, Vol. 156, pp. 280-289, doi: 10.1016/j.apenergy.2015.07.019.
  26. Steil, M. C., Nobrega, S. D., Georges, S., Gelin, P., Uhlenbruck, S. and Fonseca, F. C.(2017), "Durable direct ethanol anode-supported solid oxide fuel cell", Applied Energy, Vol. 199, pp. 180-186, doi: 10.1016/j.apenergy.2017.04.086.
  27. Xing, H., Stuart, C., Spence, S. and Chen, H.(2021), "Alternative fuel options for low carbon maritime transportation: Pathways to 2050," Journal of Cleaner Production, Vol. 297, doi: 10.1016/j.jclepro.2021.126651.
  28. Zhou, J., Wang, Z., Han, M., Sun, Z. and Sun, K.(2022), "Optimization of a 30 kW SOFC combined heat and power system with different cycles and hydrocarbon fuels", International Jounal of Hydrogen Energy, Vol. 47, No. 6, pp. 4109-4119, doi: 10.1016/j.ijhydene.2021.11.049.
  29. Zheng, N., Duan, L., Wang, X., Lu, Z. and Zhang, H.(2022), "Thermodynamic performance analysis of a novel PEMEC-SOFC-based poly-generation system integrated mechanical compression and thermal energy storage", Energy Conversion and Management, Vol. 265, doi: 10.1016/j.enconman.2022.115770.