DOI QR코드

DOI QR Code

SINGULAR HYPERBOLICITY OF C1 GENERIC THREE DIMENSIONAL VECTOR FIELDS

  • Manseob Lee (Department of Marketing Big Data Mokwon University)
  • 투고 : 2023.06.23
  • 심사 : 2023.10.19
  • 발행 : 2024.05.01

초록

In the paper, we show that for a generic C1 vector field X on a closed three dimensional manifold M, any isolated transitive set of X is singular hyperbolic. It is a partial answer of the conjecture in [13].

키워드

과제정보

The author wishes to express grateful to Xiao Wen for the hospitality at Beihang University in China.

참고문헌

  1. F. Abdenur, C. Bonatti, and S. Crovisier, Global dominated splittings and the C1 Newhouse phenomenon, Proc. Amer. Math. Soc. 134 (2006), no. 8, 2229-2237. https://doi.org/10.1090/S0002-9939-06-08445-0
  2. C. Bonatti and L. J. Diaz, Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math. (2) 143 (1996), no. 2, 357-396. https://doi.org/10.2307/2118647
  3. C. Bonatti, L. J. Diaz, and E. R. Pujals, A C1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. (2) 158 (2003), no. 2, 355-418. https://doi.org/10.4007/annals.2003.158.355
  4. C. M. Carballo, C. A. Morales Rojas, and M. J. Pacifico, Maximal transitive sets with singularities for generic C1 vector fields, Bol. Soc. Brasil. Mat. (N.S.) 31 (2000), no. 3, 287-303. https://doi.org/10.1007/BF01241631
  5. L. J. Diaz, E. R. Pujals, and R. Ures, Partial hyperbolicity and robust transitivity, Acta Math. 183 (1999), no. 1, 1-43. https://doi.org/10.1007/BF02392945
  6. J. Guckenheimer, A strange, strange attractor, The Hopf Bifurcation Theorem and its Applications, Springer-Verlag, New York, 1976.
  7. M. Li, S. Gan, and L. Wen, Robustly transitive singular sets via approach of an extended linear Poincare flow, Discrete Contin. Dyn. Syst. 13 (2005), no. 2, 239-269. https://doi.org/10.3934/dcds.2005.13.239
  8. S. T. Liao, Obstruction sets. I, Acta Math. Sinica 23 (1980), no. 3, 411-453.
  9. S. T. Liao, Obstruction sets. II, Acta Sci. Natur. Univ. Pekinensis 2 (1981), 1-36.
  10. E. N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci. 20 (1963), no. 2, 130-141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
  11. R. Mane, An ergodic closing lemma, Ann. of Math. (2) 116 (1982), no. 3, 503-540. https://doi.org/10.2307/2007021
  12. R. Mane, A proof of the C1 stability conjecture, Publ. Math. IHES 66 (1988), 161-210. https://doi.org/10.1007/BF02698931
  13. C. A. Morales and M. J. Pacifico, A dichotomy for three-dimensional vector fields, Ergod. Th. & Dynam. Syst. 23 (2003), 1575-1600. https://doi.org/10.1017/S0143385702001621
  14. C. A. Morales, M. J. Pac'ifico, and E. R. Pujals, Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. of Math. (2) 160 (2004), no. 2, 375-432. https://doi.org/10.4007/annals.2004.160.375
  15. J. Palis Jr. and W. de Melo, Geometric theory of dynamical systems, translated from the Portuguese by A. K. Manning, Springer, New York, 1982.
  16. Y. Shi, S. Gan, and L. Wen, On the singular-hyperbolicity of star flows, J. Mod. Dyn. 8 (2014), no. 2, 191-219. https://doi.org/10.3934/jmd.2014.8.191
  17. L. Wen, On the C1 stability conjecture for flows, J. Differential Equations 129 (1996), no. 2, 334-357. https://doi.org/10.1006/jdeq.1996.0121
  18. L. Wen, Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles, Bull. Braz. Math. Soc. (N.S.) 35 (2004), no. 3, 419-452. https://doi.org/10.1007/s00574-004-0023-x
  19. X. Wen, L. Wen, and D. Yang, A characterization of singular hyperbolicity via the linear Poincare flow, J. Differential Equations 268 (2020), no. 8, 4256-4275. https://doi.org/10.1016/j.jde.2019.10.029