DOI QR코드

DOI QR Code

Morroniside Protects C2C12 Myoblasts from Oxidative Damage Caused by ROS-Mediated Mitochondrial Damage and Induction of Endoplasmic Reticulum Stress

  • Hyun Hwangbo (Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Department of Biochemistry, College of Korean Medicine, Dong-eui University) ;
  • Cheol Park (Department Division of Basic Sciences, College of Liberal Studies, Dong-eui University) ;
  • EunJin Bang (Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Department of Biochemistry, College of Korean Medicine, Dong-eui University) ;
  • Hyuk Soon Kim (Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University) ;
  • Sung-Jin Bae (Department of Molecular Biology and Immunology, Kosin University College of Medicine) ;
  • Eunjeong Kim (BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University) ;
  • Youngmi Jung (Department of Biological Sciences, College of Natural Science, Pusan National University) ;
  • Sun-Hee Leem (Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University) ;
  • Young Rok Seo (Institute of Environmental Medicine, Department of Life Science, Dongguk University Biomedi Campus) ;
  • Su Hyun Hong (Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Department of Biochemistry, College of Korean Medicine, Dong-eui University) ;
  • Gi-Young Kim (Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University) ;
  • Jin Won Hyun (Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University) ;
  • Yung Hyun Choi (Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Department of Biochemistry, College of Korean Medicine, Dong-eui University)
  • Received : 2024.01.12
  • Accepted : 2024.03.13
  • Published : 2024.05.01

Abstract

Oxidative stress contributes to the onset of chronic diseases in various organs, including muscles. Morroniside, a type of iridoid glycoside contained in Cornus officinalis, is reported to have advantages as a natural compound that prevents various diseases. However, the question of whether this phytochemical exerts any inhibitory effect against oxidative stress in muscle cells has not been well reported. Therefore, the current study aimed to evaluate whether morroniside can protect against oxidative damage induced by hydrogen peroxide (H2O2) in murine C2C12 myoblasts. Our results demonstrate that morroniside pretreatment was able to inhibit cytotoxicity while suppressing H2O2-induced DNA damage and apoptosis. Morroniside also significantly improved the antioxidant capacity in H2O2-challenged C2C12 cells by blocking the production of cellular reactive oxygen species and mitochondrial superoxide and increasing glutathione production. In addition, H2O2-induced mitochondrial damage and endoplasmic reticulum (ER) stress were effectively attenuated by morroniside pretreatment, inhibiting cytoplasmic leakage of cytochrome c and expression of ER stress-related proteins. Furthermore, morroniside neutralized H2O2-mediated calcium (Ca2+) overload in mitochondria and mitigated the expression of calpains, cytosolic Ca2+-dependent proteases. Collectively, these findings demonstrate that morroniside protected against mitochondrial impairment and Ca2+-mediated ER stress by minimizing oxidative stress, thereby inhibiting H2O2-induced cytotoxicity in C2C12 myoblasts.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2023-00217899 and RS2023-00270936).

References

  1. Abrigo, J., Simon, F., Cabrera, D., Vilos, C. and Cabello-Verrugio, C. (2019) Mitochondrial dysfunction in skeletal muscle pathologies. Curr. Protein Pept. Sci. 20, 536-546. https://doi.org/10.2174/1389203720666190402100902
  2. Alizadeh Pahlavani, H., Laher, I., Knechtle, B. and Zouhal, H. (2022) Exercise and mitochondrial mechanisms in patients with sarcopenia. Front. Physiol. 13, 1040381.
  3. Cai, L., Shi, L., Peng, Z., Sun, Y. and Chen, J. (2023) Ageing of skeletal muscle extracellular matrix and mitochondria: finding a potential link. Ann. Med. 55, 2240707.
  4. Cao, M., Fan, B., Zhen, T., Das, A. and Wang, J. (2023) Ruthenium biochanin-A complex ameliorates lung carcinoma through the downregulation of the TGF-β/PPARγ/PI3K/TNFα pathway in association with caspase-3-mediated apoptosis. Toxicol. Res. 39, 455-475. https://doi.org/10.1007/s43188-023-00177-1
  5. Ceci, R., Duranti, G., Giuliani, S., Rossi, M. N., Dimauro, I., Sabatini, S., Mariottini, P. and Cervelli, M. (2022a) The impact of spermidine on C2C12 myoblasts proliferation, redox status and polyamines metabolism under H2O2 exposure. Int. J. Mol. Sci. 23, 10986.
  6. Ceci, R., Maldini, M., Olson, M. E., Crognale, D., Horner, K., Dimauro, I., Sabatini, S. and Duranti, G. (2022b) Moringa oleifera leaf extract protects C2C12 myotubes against H2O2-induced oxidative stress. Antioxidants (Basel) 11, 1435.
  7. Chai, Y. C. and Mieyal, J. J. (2023) Glutathione and glutaredoxin-key players in cellular redox homeostasis and signaling. Antioxidants (Basel) 12, 1553.
  8. Chen, X., Ji, Y., Liu, R., Zhu, X., Wang, K., Yang, X., Liu, B., Gao, Z., Huang, Y., Shen, Y., Liu, H. and Sun, H. (2023) Mitochondrial dysfunction: roles in skeletal muscle atrophy. J. Transl. Med. 21, 503.
  9. Daverkausen-Fischer, L. and Prols, F. (2022) Regulation of calcium homeostasis and flux between the endoplasmic reticulum and the cytosol. J. Biol. Chem. 298, 102061.
  10. Dey, S., Nagpal, I., Sow, P., Dey, R., Chakrovorty, A., Bhattacharjee, B., Saha, S., Majumder, A., Bera, M., Subbarao, N., Nandi, S., Hossen Molla, S., Guptaroy, P., Abraham, S. K., Khuda-Bukhsh, A. R. and Samadder, A. (2023) Morroniside interaction with poly (ADP-ribose) polymerase accentuates metabolic mitigation of alloxan-induced genotoxicity and hyperglycaemia: a molecular docking based in vitro and in vivo experimental therapeutic insight. J. Biomol. Struct. Dyn. 17, 1-18. https://doi.org/10.1080/07391102.2023.2246585
  11. Duan, L., Huang, J., Zhang, Y., Pi, G., Ying, X., Zeng, F., Hu, D. and Ma, J. (2023) FOXK1 regulates epithelial-mesenchymal transition and radiation sensitivity in nasopharyngeal carcinoma via the JAK/STAT3 signaling pathway. Genes Genomics 45, 749-761. https://doi.org/10.1007/s13258-023-01380-y
  12. Espinosa, A., Casas, M. and Jaimovich, E. (2023) Energy (and reactive oxygen species generation) saving distribution of mitochondria for the activation of ATP production in skeletal muscle. Antioxidants (Basel) 12, 1624.
  13. Foreman, N. A., Hesse, A. S. and Ji, L. L. (2021) Redox signaling and sarcopenia: searching for the primary suspect. Int. J. Mol. Sci. 22, 9045.
  14. Fujii, J., Homma, T. and Osaki, T. (2022) Superoxide radicals in the execution of cell death. Antioxidants (Basel) 11, 501.
  15. Hanko, M., Svorc, L., Plankova, A. and Mikus, P. (2019) Overview and recent advances in electrochemical sensing of glutathione - a review. Anal. Chim. Acta 1062, 1-27. https://doi.org/10.1016/j.aca.2019.02.052
  16. Hong, J., Lee, T. K., Kim, I. H., Lee, S., Jeon, B. J., Lee, J., Won, M. H. and Kim, S. (2022) Anti-stress effects of Fameyes in in vitro and in vivo models of stresses. Lab. Anim. Res. 38, 39.
  17. Hu, Z., Shi, S., Ou, Y., Hu, F. and Long, D. (2023) Mitochondria-associated endoplasmic reticulum membranes: a promising toxicity regulation target. Acta Histochem. 125, 152000.
  18. Hua, T., Robitaille, M., Roberts-Thomson, S. J. and Monteith, G. R. (2023) The intersection between cysteine proteases, Ca2+ signalling and cancer cell apoptosis. Biochim. Biophys. Acta Mol. Cell. Res. 1870, 119532.
  19. Huang, J., Zhang, Y., Dong, L., Gao, Q., Yin, L., Quan, H., Chen, R., Fu, X. and Lin, D. (2018) Ethnopharmacology, phytochemistry, and pharmacology of Cornus officinalis Sieb. et Zucc. J. Ethnopharmacol. 213, 280-301. https://doi.org/10.1016/j.jep.2017.11.010
  20. Jacobs, L. J. H. C. and Riemer, J. (2023) Maintenance of small molecule redox homeostasis in mitochondria. FEBS Lett. 597, 205-223. https://doi.org/10.1002/1873-3468.14485
  21. Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K. and Valko, M. (2023) Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch. Toxicol. 97, 2499-2574. https://doi.org/10.1007/s00204-023-03562-9
  22. Karthikeyan, B., Harini, L., Krishnakumar, V., Kannan, V. R., Sundar, K. and Kathiresan, T. (2017) Insights on the involvement of (-)-epigal-locatechin gallate in ER stress-mediated apoptosis in age-related macular degeneration. Apoptosis 22, 72-85. https://doi.org/10.1007/s10495-016-1318-2
  23. Kaur, S. D., Chellappan, D. K., Aljabali, A. A., Tambuwala, M., Dua, K. and Kapoor, D. N. (2022) Recent advances in cancer therapy using PARP inhibitors. Med. Oncol. 39, 241.
  24. Kowalczyk, P., Sulejczak, D., Kleczkowska, P., Bukowska-Osko, I., Kucia, M., Popiel, M., Wietrak, E., Kramkowski, K., Wrzosek, K. and Kaczynska, K. (2021) Mitochondrial oxidative stress-a causative factor and therapeutic target in many diseases. Int. J. Mol. Sci. 22, 13384.
  25. Le, Q. G. and Kimata, Y. (2021) Multiple ways for stress sensing and regulation of the endoplasmic reticulum-stress sensors. Cell Struct. Funct. 46, 37-49.
  26. Lee, J. Y., Lee, J., Lee, S. H., Hwang, J. H. and Suh, H. N. (2023) Pelargonium sidoides extract mediates nephrotoxicity through mitochondrial malfunction and cytoskeleton destabilization. Toxicol. Res. 39, 601-609. https://doi.org/10.1007/s43188-023-00186-0
  27. Li, J., Wang, Z., Li, C., Song, Y., Wang, Y., Bo, H. and Zhang, Y. (2022) Impact of exercise and aging on mitochondrial homeostasis in skeletal muscle: roles of ROS and epigenetics. Cells 11, 2086.
  28. Li, M., Zhang, J., Jiang, L., Wang, W., Feng, X., Liu, M. and Yang, D. (2023) Neuroprotective effects of morroniside from Cornus officinalissieb. Et zucc against Parkinson's disease via inhibiting oxidative stress and ferroptosis. BMC Complement. Med. Ther. 23, 218.
  29. Liu, X., Hussain, R., Mehmood, K., Tang, Z., Zhang, H. and Li, Y. (2022) Mitochondrial-endoplasmic reticulum communication-mediated oxidative stress and autophagy. Biomed. Res. Int. 2022, 6459585.
  30. Lu, N., Zhu, J. F., Lv, H. F., Zhang, H. P., Wang, P. L., Yang, J. J. and Wang, X. W. (2023) Modulation of oxidized low-density lipoprotein-affected macrophage efferocytosis by mitochondrial calcium uniporter in a murine model. Immunol. Lett. 263, 14-24. https://doi.org/10.1016/j.imlet.2023.09.003
  31. Ma, Y., Hao, G., Lin, X., Zhao, Z., Yang, A., Cao, Y., Zhang, S., Fan, L., Geng, J., Zhang, Y., Chen, J., Song, C., He, M. and Du, H. (2022) Morroniside protects human granulosa cells against H2O2-induced oxidative damage by regulating the Nrf2 and MAPK signaling pathways. Evid. Based Complement. Alternat. Med. 2022, 8099724.
  32. Morris, J. L., Gillet, G., Prudent, J. and Popgeorgiev, N. (2021) Bcl-2 family of proteins in the control of mitochondrial calcium signalling: an old chap with new roles. Int. J. Mol. Sci. 22, 3730.
  33. Ong, G. and Logue, S. E. (2023) Unfolding the interactions between endoplasmic reticulum stress and oxidative stress. Antioxidants (Basel) 12, 981.
  34. Pang, B. P. S., Chan, W. S. and Chan, C. B. (2021) Mitochondria homeostasis and oxidant/antioxidant balance in skeletal muscle-do myokines play a role? Antioxidants (Basel) 10, 179.
  35. Park, C. H., Noh, J. S., Kim, J. H., Tanaka, T., Zhao, Q., Matsumoto, K., Shibahara, N. and Yokozawa, T. (2011) Evaluation of morroniside, iridoid glycoside from Corni Fructus, on diabetes-induced alterations such as oxidative stress, inflammation, and apoptosis in the liver of type 2 diabetic db/db mice. Biol. Pharm. Bull. 34, 1559-1565. https://doi.org/10.1248/bpb.34.1559
  36. Park, C., Cha, H. J., Lee, H., Kim, G. Y. and Choi, Y. H. (2021) The regulation of the TLR4/NF-κB and Nrf2/HO-1 signaling pathways is involved in the inhibition of lipopolysaccharide-induced inflammation and oxidative reactions by morroniside in RAW 264.7 macrophages. Arch. Biochem. Biophys. 706, 108926.
  37. Park, C., Kim, D. H., Kim, T. H., Jeong, S. U., Yoon, J. H., Moon, S. K., Kwon, C. Y., Park, S. H., Hong, S. H., Shim, J. H. Kim, G. Y. and Choi, Y. H. (2023) Improvement of oxidative stress-induced cytotoxicity of Angelica keiskei (Miq.) Koidz. leaves extract through activation of heme oxygenase-1 in C2C12 murine myoblasts. Biotechnol. Bioprocess Eng. 28, 51-62. https://doi.org/10.1007/s12257-022-0310-7
  38. Pierre, N., Barbe, C., Gilson, H., Deldicque, L., Raymackers, J. M. and Francaux, M. (2014) Activation of ER stress by hydrogen peroxide in C2C12 myotubes. Biochem. Biophys. Res. Commun. 450, 459-463. https://doi.org/10.1016/j.bbrc.2014.05.143
  39. Spina, A., Guidarelli, A., Fiorani, M., Varone, E., Catalani, A., Zito, E. and Cantoni, O. (2022) Crosstalk between ERO1α and ryanodine receptor in arsenite-dependent mitochondrial ROS formation. Biochem. Pharmacol. 198, 114973.
  40. Srivastava, N. and Saxena, A. K. (2023) Caspase-3 activators as anticancer agents. Curr. Protein Pept. Sci. 24, 783-804. https://doi.org/10.2174/1389203724666230227115305
  41. Su, L., Zhang, J., Gomez, H., Kellum, J. A. and Peng, Z. (2023) Mitochondria ROS and mitophagy in acute kidney injury. Autophagy 19, 401-414. https://doi.org/10.1080/15548627.2022.2084862
  42. Wang, B., Wang, Y., Zhang, J., Hu, C., Jiang, J., Li, Y. and Peng, Z. (2023) ROS-induced lipid peroxidation modulates cell death outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis. Arch. Toxicol. 97, 1439-1451. https://doi.org/10.1007/s00204-023-03476-6
  43. Wang, W., Huang, W., Li, L., Ai, H., Sun, F., Liu, C. and An, Y. (2008) Morroniside prevents peroxide-induced apoptosis by induction of endogenous glutathione in human neuroblastoma cells. Cell. Mol. Neurobiol. 28, 293-305. https://doi.org/10.1007/s10571-007-9168-7
  44. Wang, W., Sun, F., An, Y., Ai, H., Zhang, L., Huang, W. and Li, L. (2009) Morroniside protects human neuroblastoma SH-SY5Y cells against hydrogen peroxide-induced cytotoxicity. Eur. J. Pharmacol. 613, 19-23. https://doi.org/10.1016/j.ejphar.2009.04.013
  45. Wang, W., Xu, J., Li, L., Wang, P., Ji, X., Ai, H., Zhang, L. and Li, L. (2010) Neuroprotective effect of morroniside on focal cerebral ischemia in rats. Brain Res. Bull. 83, 196-201. https://doi.org/10.1016/j.brainresbull.2010.07.003
  46. Wen, X., Lin, Z. Q., Liu, B. and Wei, Y. Q. (2012) Caspase-mediated programmed cell death pathways as potential therapeutic targets in cancer. Cell Prolif. 45, 217-224. https://doi.org/10.1111/j.1365-2184.2012.00814.x
  47. Wolf, P., Schoeniger, A. and Edlich, F. (2022) Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. Biochim. Biophys. Acta Mol. Cell Res. 869, 119317.
  48. Xu, H., Shen, J., Liu, H., Shi, Y., Li, L. and Wei, M. (2006) Morroniside and loganin extracted from Cornus officinalis have protective effects on rat mesangial cell proliferation exposed to advanced glycation end products by preventing oxidative stress. Can. J. Physiol. Pharmacol. 84, 1267-1273. https://doi.org/10.1139/y06-075
  49. Xu, L., Liu, Y., Chen, X., Zhong, H. and Wang, Y. (2023) Ferroptosis in life: to be or not to be. Biomed. Pharmacother. 159, 114241.
  50. Yokozawa, T., Kang, K. S., Park, C. H., Noh, J. S., Yamabe, N., Shibahara, N. and Tanaka, T. (2010) Bioactive constituents of Corni Fructus: the therapeutic use of morroniside, loganin, and 7-O-galloyl-dsedoheptulose as renoprotective agents in type 2 diabetes. Drug Discov. Ther. 4, 223-234.
  51. You, L., Peng, H., Liu, J., Cai, M., Wu, H., Zhang, Z., Bai, J., Yao, Y., Dong, X., Yin, X. and Ni, J. (2021) Catalpol protects ARPE-19 cells against oxidative stress via activation of the Keap1/Nrf2/ARE pathway. Cells 10, 2635.
  52. Zhang, B., Pan, C., Feng, C., Yan, C., Yu, Y., Chen, Z., Guo, C. and Wang, X. (2022a) Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Rep. 27, 45-52. https://doi.org/10.1080/13510002.2022.2046423
  53. Zhang, F., Yan, Y., Zhang, J., Li, L., Wang, Y. W., Xia, C. Y., Lian, W. W., Peng, Y., Zheng, J., He, J., Xu, J. K. and Zhang, W. K. (2022b) Phytochemistry, synthesis, analytical methods, pharmacological activity, and pharmacokinetics of loganin: a comprehensive review. Phytother. Res. 36, 2272-2299. https://doi.org/10.1002/ptr.7347