DOI QR코드

DOI QR Code

Effect of Kaempferol on Modulation of Vascular Contractility Mainly through PKC and CPI-17 Inactivation

  • Hyuk-Jun Yoon (Department of Pharmacy, College of Pharmacy, Daegu Catholic University) ;
  • Heui Woong Moon (Department of Pharmacy, College of Pharmacy, Daegu Catholic University) ;
  • Young Sil Min (Department of Pharmaceutical Science, Jungwon University) ;
  • Fanxue Jin (School of Medicine, Kyungpook National University) ;
  • Joon Seok Bang (College of Pharmacy, Sookmyung Women's University) ;
  • Uy Dong Sohn (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Hyun Dong Je (Department of Pharmacy, College of Pharmacy, Daegu Catholic University)
  • Received : 2023.10.30
  • Accepted : 2023.11.28
  • Published : 2024.05.01

Abstract

In this study, we investigated the efficacy of kaempferol (a flavonoid found in plants and plant-derived foods such as kale, beans, tea, spinach and broccoli) on vascular contractibility and aimed to clarify the detailed mechanism underlying the relaxation. Isometric contractions of divested muscles were stored and linked with western blot analysis which was carried out to estimate the phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) and phosphorylation-dependent inhibitory protein for myosin phosphatase (CPI-17) and to estimate the effect of kaempferol on the RhoA/ROCK/CPI-17 pathway. Kaempferol conspicuously impeded phorbol ester-, fluoride- and a thromboxane mimetic-derived contractions regardless of endothelial nitric oxide synthesis, indicating its direct effect on smooth muscles. It also conspicuously impeded the fluoride-derived elevation in phospho-MYPT1 rather than phospho-CPI-17 levels and phorbol 12,13-dibutyrate-derived increase in phospho-CPI-17 and phospho-ERK1/2 levels, suggesting the depression of PKC and MEK activities and subsequent phosphorylation of CPI-17 and ERK1/2. Taken together, these outcomes suggest that kaempferol-derived relaxation incorporates myosin phosphatase retrieval and calcium desensitization, which appear to be modulated by CPI-17 dephosphorylation mainly through PKC inactivation.

Keywords

References

  1. Akiyama, M., Mizokami, T., Ito, H. and Ikeda, Y. A. (2023) A randomized, placebo-controlled trial evaluating the safety of excessive administration of kaempferol aglycone. Food Sci. Nutri. 11, 5427-5437. https://doi.org/10.1002/fsn3.3499
  2. Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsuura, Y. and Kaibuchi, K. (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246-20249. https://doi.org/10.1074/jbc.271.34.20246
  3. Ansari, H., Teng, B., Nadeem, A., Roush, K., Martin, K., Schnermann, J. and Mustafa, S. (2009) A1 adenosine receptor-mediated PKC and p42/p44 MAPK signaling in mouse coronary artery smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 297, H1032-H1039. https://doi.org/10.1152/ajpheart.00374.2009
  4. Du, Y., Han, J., Zhang, H., Xu, J., Jiang, L. and Ge, W. (2019) Kaempferol prevents against Ang II-induced cardiac remodeling through attenuating Ang II-induced inflammation and oxidative stress. J. Cardiovasc. Pharmacol. 74, 326-335. https://doi.org/10.1097/FJC.0000000000000713
  5. Gallet, C., Blaie, S., Levy-Toledano, S. and Habib, A. (2003) Thromboxane-induced ERK phosphorylation in human aortic smooth muscle cells. Adv. Exp. Med. Biol. 525, 71-73. https://doi.org/10.1007/978-1-4419-9194-2_14
  6. Goyal, R., Mittal, A., Chu, N., Shi, L., Zhang, L. and Longo, L. D. (2009) Maturation and the role of PKC-mediated contractility in ovine cerebral arteries. Am. J. Physiol. Heart Circ. Physiol. 297, H2242-H2252. https://doi.org/10.1152/ajpheart.00681.2009
  7. Hung, T. W., Chen, P. N., Wu, H. C., Wu, S. W., Tsai, P. Y., Hsieh, Y. S. and Chang, H. R. (2017) Kaempferol inhibits the invasion and migration of renal cancer cells through the downregulation of AKT and FAK pathways. Int. J. Med. Sci. 14, 984-993. https://doi.org/10.7150/ijms.20336
  8. Imran, M., Rauf, A., Shah, Z. A., Saeed F., Imran, A., Arshad, M. U., Ahmad, B., Bawazeer, S., Atif, M., Peters, D. G. and Mubarak, M. S. (2019) Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: a comprehensive review. Phytother. Res. 33, 263-275. https://doi.org/10.1002/ptr.6227
  9. Je, H. D. and Sohn, U. D. (2009) Inhibitory effect of genistein on agonist-induced modulation of vascular contractility. Mol. Cells 27, 191-198. https://doi.org/10.1007/s10059-009-0052-9
  10. Jeon, S. B., Jin, F., Kim, J. I., Kim, S. H., Suk, K., Chae, S. C., Jun, J. E., Park, W. H. and Kim, I. K. (2006) A role for Rho kinase in vascular contraction evoked by sodium fluoride. Biochem. Biophys. Res. Commun. 343, 27-33. https://doi.org/10.1016/j.bbrc.2006.02.120
  11. Johnson, R. P., El-Yazbi, A. F., Takeya, K., Walsh, E. J., Walsh, M. P. and Cole, W. C. (2009) Ca2+ sensitization via phosphorylation of myosin phosphatase targeting subunit at threonine-855 by Rho kinase contributes to the arterial myogenic response. J. Physiol. 587, 2537-2553. https://doi.org/10.1113/jphysiol.2008.168252
  12. Kim, J. I., Urban, M., Young, G. D. and Eto, M. (2012) Reciprocal regulation controlling the expression of CPI-17, a specific inhibitor protein for the myosin light chain phosphatase in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 303, C58-C68. https://doi.org/10.1152/ajpcell.00118.2012
  13. Kitazawa, T., Eto, M., Woodsome, T. P. and Brautigan, D. L. (2000) Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J. Biol. Chem. 275, 9897-9900. https://doi.org/10.1074/jbc.275.14.9897
  14. Kuriyama, T., Tokinaga, Y., Tange, K., Kimoto, Y. and Ogawa, K. (2012) Propofol attenuates angiotensin II-induced vasoconstriction by inhibiting Ca2+-dependent and PKC-mediated Ca2+ sensitization mechanisms. J. Anesth. 26, 682-688. https://doi.org/10.1007/s00540-012-1415-5
  15. Liu, Z. and Khalil, R. A. (2018) Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem. Pharmacol. 153, 91-122. https://doi.org/10.1016/j.bcp.2018.02.012
  16. Perez-Aso, M., Segura, V., Monto, F., Barettino, D., Noguera, M. A., Milligan, G. and D'Ocon, P. (2013) The three alpha1-adrenoceptor subtypes show different spatio-temporal mechanisms of internalization and ERK1/2 phosphorylation. Biochim. Biophys. Acta 1833, 2322-2333. https://doi.org/10.1016/j.bbamcr.2013.06.013
  17. Periferakis, A., Periferakis, K., Badarau, I. A., Petran, E. M., Popa, D. C., Caruntu, A., Costache, R. S., Scheau, C., Caruntu, C. and Costache, D. O. (2022) Kaempferol: antimicrobial properties sources, clinical, and traditional applications. Int. J. Mol. Sci. 23, 15054.
  18. Qi, F., Ogawa, K., Tokinaga, Y., Uematsu, N., Minonishi, T. and Hatano, Y. (2009) Volatile anesthetics inhibit angiotensin II-induced vascularcontraction by modulating myosin light chain phosphatase inhibiting protein, CPI-17 and regulatory subunit, MYPT1 phosphorylation. Anesth. Analg. 109, 412-417. https://doi.org/10.1213/ane.0b013e3181ac6d96
  19. Qiao, Y. N., He, W. Q., Chen, C. P., Zhang, C. H., Zhao, W., Wang, P., Zhang, L., Wu, Y. Z., Yang, X., Peng, Y. J., Gao, J. M., Kamm, K. E., Stull, J. T. and Zhu, M. S. (2014) Myosin phosphatase target subunit 1 (MYPT1) regulates the contraction and relaxation of vascular smooth muscle and maintains blood pressure. J. Biol. Chem. 289, 22512-22523. https://doi.org/10.1074/jbc.M113.525444
  20. Rajendran, P., Rengarajan, T., Nandakumar, N., Palaniswami, R., Nishigaki, Y. and Nishigaki, I. (2014) Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur. J. Med. Chem. 86, 103-112. https://doi.org/10.1016/j.ejmech.2014.08.011
  21. Roman, H. N., Zitouni, N. B., Kachmar, L., Benedetti, A., Sobieszek, A. and Lauzon, A. M. (2014) The role of caldesmon and its phosphorylation by ERK on the binding force of unphosphorylated myosin to actin. Biochim. Biophys. Acta 1840, 3218-3225. https://doi.org/10.1016/j.bbagen.2014.07.024
  22. Sakurada, S., Takuwa, N., Sugimoto, N., Wang, Y., Seto, M., Sasaki, Y. and Takuwa, Y. (2003) Ca2+-dependent activation of Rho and Rho kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circ. Res. 93, 548-556. https://doi.org/10.1161/01.RES.0000090998.08629.60
  23. Sasahara, T., Okamoto, H., Ohkura, N., Kobe, A. and Yayama, K. (2015) Epidermal growth factor induces Ca2+ sensitization through Rho-kinase-dependent phosphorylation of myosin phosphatase target subunit 1 in vascular smooth muscle. Eur. J. Pharmacol. 762, 89-95. https://doi.org/10.1016/j.ejphar.2015.05.042
  24. Somlyo, A. P. and Somlyo, A. V. (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325-1358. https://doi.org/10.1152/physrev.00023.2003
  25. Tsai, M. H. and Jiang, M. J. (2006) Rho-kinase-mediated regulation of receptor-agonist-stimulated smooth muscle contraction. Pflugers Arch. 453, 223-232. https://doi.org/10.1007/s00424-006-0133-y
  26. Wilson, D. P., Susnjar, M., Kiss, E., Sutherland, C. and Walsh, M. P. (2005) Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of Ca2+ entry and Ca2+ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697. Biochem. J. 389, 763-774. https://doi.org/10.1042/BJ20050237
  27. Wooldridge, A. A., MacDonald, J. A., Erdodi, F., Ma, C., Borman, M. A., Hartshorne, D. J. and Haystead, T. A. (2004) Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J. Biol. Chem. 279, 34496-34504. https://doi.org/10.1074/jbc.M405957200
  28. Yang, Q., Fujii, W., Kaji, N., Kakuta, S., Kada, K., Kuwahara, M., Tsubone, H., Ozaki, H. and Hori, M. (2018) The essential role of phospho-T38 CPI-17 in the maintenance of physiological blood pressure using genetically modified mice. FASEB J. 32, 2095-2109. https://doi.org/10.1096/fj.201700794R