DOI QR코드

DOI QR Code

Lysophosphatidic Acid Receptor 1 Plays a Pathogenic Role in Permanent Brain Ischemic Stroke by Modulating Neuroinflammatory Responses

  • Supriya Tiwari (Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University) ;
  • Nikita Basnet (Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University) ;
  • Ji Woong Choi (Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University)
  • Received : 2024.03.25
  • Accepted : 2024.04.09
  • Published : 2024.05.01

Abstract

Lysophosphatidic acid receptor 1 (LPA1) plays a critical role in brain injury following a transient brain ischemic stroke. However, its role in permanent brain ischemic stroke remains unknown. To address this, we investigated whether LPA1 could contribute to brain injury of mice challenged by permanent middle cerebral artery occlusion (pMCAO). A selective LPA1 antagonist (AM152) was used as a pharmacological tool for this investigation. When AM152 was given to pMCAO-challenged mice one hour after occlusion, pMCAO-induced brain damage such as brain infarction, functional neurological deficits, apoptosis, and blood-brain barrier disruption was significantly attenuated. Histological analyses demonstrated that AM152 administration attenuated microglial activation and proliferation in injured brain after pMCAO challenge. AM152 administration also attenuated abnormal neuroinflammatory responses by decreasing expression levels of pro-inflammatory cytokines while increasing expression levels of anti-inflammatory cytokines in the injured brain. As underlying effector pathways, NF-κB, MAPKs (ERK1/2, p38, and JNKs), and PI3K/Akt were found to be involved in LPA1-dependent pathogenesis. Collectively, these results demonstrate that LPA1 can contribute to brain injury by permanent ischemic stroke, along with relevant pathogenic events in an injured brain.

Keywords

Acknowledgement

This work was supported by the National Research Foundation (NRF) of Korea (NRF-2021R1A2C1005520) and the Gachon University Research Fund of 2021 (GCU-202103430001) to JWC.

References

  1. Brinkmann, V., Billich, A., Baumruker, T., Heining, P., Schmouder, R., Francis, G., Aradhye, S. and Burtin, P. (2010) Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat. Rev. Drug Discov. 9, 883-897. https://doi.org/10.1038/nrd3248
  2. Choi, J. W. and Chun, J. (2013) Lysophospholipids and their receptors in the central nervous system. Biochim. Biophys. Acta Mol. Cell Biol. 1831, 20-32. https://doi.org/10.1016/j.bbalip.2012.07.015
  3. Crupi, R., Di Paola, R., Esposito, E. and Cuzzocrea, S. (2018) Middle cerebral artery occlusion by an intraluminal suture method. Methods Mol. Biol. 1727, 393-401. https://doi.org/10.1007/978-1-4939-7571-6_31
  4. Deng, X., Hu, Z., Zhou, S., Wu, Y., Fu, M., Zhou, C., Sun, J., Gao, X. and Huang, Y. (2024) Perspective from single-cell sequencing: is inflammation in acute ischemic stroke beneficial or detrimental? CNS Neurosci.Ther. 30, e14510.
  5. Fu, Y., Hao, J., Zhang, N., Ren, L., Sun, N., Li, Y. J., Yan, Y., Huang, D., Yu, C. and Shi, F. D. (2014a) Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol. 71, 1092-1101. https://doi.org/10.1001/jamaneurol.2014.1065
  6. Fu, Y., Zhang, N., Ren, L., Yan, Y., Sun, N., Li, Y. J., Han, W., Xue, R., Liu, Q., Hao, J., Yu, C. and Shi, F. D. (2014b) Impact of an immune modulator fingolimod on acute ischemic stroke. Proc. Natl. Acad. Sci. U. S. A. 111, 18315-18320. https://doi.org/10.1073/pnas.1416166111
  7. Gaire, B. P., Bae, Y. J. and Choi, J. W. (2019a) S1P1 regulates M1/M2 polarization toward brain injury after transient focal cerebral ischemia. Biomol. Ther. (Seoul) 27, 522-529. https://doi.org/10.4062/biomolther.2019.005
  8. Gaire, B. P. and Choi, J. W. (2021) Critical roles of lysophospholipid receptors in activation of neuroglia and their neuroinflammatory responses. Int. J. Mol. Sci. 22, 7864.
  9. Gaire, B. P., Lee, C. H., Sapkota, A., Lee, S. Y., Chun, J., Cho, H. J., Nam, T. G. and Choi, J. W. (2018a) Identification of sphingosine 1-phosphate receptor subtype 1 (S1P1) as a pathogenic factor in transient focal cerebral ischemia. Mol. Neurobiol. 55, 2320-2332. https://doi.org/10.1007/s12035-017-0468-8
  10. Gaire, B. P., Sapkota, A. and Choi, J. W. (2020) BMS-986020, a specific LPA1 antagonist, provides neuroprotection against ischemic stroke in mice. Antioxidants (Basel) 9, 1097.
  11. Gaire, B. P., Sapkota, A., Song, M. R. and Choi, J. W. (2019b) Lysophosphatidic acid receptor 1 (LPA1) plays critical roles in microglial activation and brain damage after transient focal cerebral ischemia. J. Neuroinflamm. 16, 170.
  12. Gaire, B. P., Song, M. R. and Choi, J. W. (2018b) Sphingosine 1-phosphate receptor subtype 3 (S1P3) contributes to brain injury after transient focal cerebral ischemia via modulating microglial activation and their M1 polarization. J. Neuroinflamm. 15, 284.
  13. Guo, S., Wang, H. and Yin, Y. (2022) Microglia polarization from M1 to M2 in neurodegenerative diseases. Front. Aging Neurosci. 14, 815347.
  14. Halder, S. K., Yano, R., Chun, J. and Ueda, H. (2013) Involvement of LPA1 receptor signaling in cerebral ischemia-induced neuropathic pain. Neuroscience 235, 10-15. https://doi.org/10.1016/j.neuroscience.2013.01.005
  15. He, X., Li, Y., Deng, B., Lin, A., Zhang, G., Ma, M., Wang, Y., Yang, Y. and Kang, X. (2022) The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: mechanisms and therapeutic opportunities. Cell Prolif. 55, e13275.
  16. Hecht, J. H., Weiner, J. A., Post, S. R. and Chun, J. (1996) Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J. Cell Biol. 135, 1071-1083. https://doi.org/10.1083/jcb.135.4.1071
  17. Huang, T., Zhao, D., Lee, S., Keum, G. and Yang, H. O. (2023) Sinapic acid attenuates the neuroinflammatory response by targeting AKT and MAPK in LPS-activated microglial models. Biomol. Ther. (Seoul) 31, 276-284. https://doi.org/10.4062/biomolther.2022.092
  18. Jiang, C. T., Wu, W. F., Deng, Y. H. and Ge, J. W. (2020) Modulators of microglia activation and polarization in ischemic stroke (review). Mol. Med. Rep. 21, 2006-2018.
  19. Kim, T., Jeon, J., Park, J. S., Park, Y., Kim, J., Noh, H., Kim, H. S. and Seo, H. (2021) Matrix metalloproteinase-8 inhibitor ameliorates inflammatory responses and behavioral deficits in LRRK2 G2019S parkinson's disease model mice. Biomol. Ther. (Seoul) 29, 483-491. https://doi.org/10.4062/biomolther.2020.181
  20. Kwon, J. H., Gaire, B. P., Park, S. J., Shin, D. Y. and Choi, J. W. (2018) Identifying lysophosphatidic acid receptor subtype 1 (LPA1) as a novel factor to modulate microglial activation and their TNF-α production by activating ERK1/2. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863, 1237-1245. https://doi.org/10.1016/j.bbalip.2018.07.015
  21. Lawrence, T. (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harbor Perspect. Biol. 1, a001651.
  22. Lee, C. H., Sapkota, A., Gaire, B. P. and Choi, J. W. (2020) NLRP3 inflammasome activation is involved inLPA1-mediated brain injury after transient focal cerebral ischemia. Int. J. Mol. Sci. 21, 8595.
  23. Li, R., Zhou, Y., Zhang, S., Li, J., Zheng, Y. and Fan, X. (2022a) The natural (poly)phenols as modulators of microglia polarization via TLR4/NF-κB pathway exert anti-inflammatory activity in ischemic stroke. Eur. J. Pharmacol. 914, 174660.
  24. Li, T., Pang, S., Yu, Y., Wu, X., Guo, J. and Zhang, S. (2013) Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke. Brain 136, 3578-3588. https://doi.org/10.1093/brain/awt287
  25. Li, Y. F., Ren, X., Zhang, L., Wang, Y. H. and Chen, T. (2022b) Microglial polarization in TBI: signaling pathways and influencing pharmaceuticals. Front. Aging Neurosci. 14, 901117.
  26. Long, Y., Li, X. Q., Deng, J., Ye, Q. B., Li, D., Ma, Y., Wu, Y. Y., Hu, Y., He, X. F., Wen, J., Shi, A., Yu, S., Shen, L., Ye, Z., Zheng, C. and Li, N. (2024) Modulating the polarization phenotype of microglia - a valuable strategy for central nervous system diseases. Ageing Res. Rev. 93, 102160.
  27. Ma, R., Xie, Q., Li, Y., Chen, Z., Ren, M., Chen, H., Li, H., Li, J. and Wang, J. (2020) Animal models of cerebral ischemia: a review. Biomed. Pharmacother. 131, 110686.
  28. Palmer, S. M., Snyder, L., Todd, J. L., Soule, B., Christian, R., Anstrom, K., Luo, Y., Gagnon, R. and Rosen, G. (2018) Randomized, double-blind, placebo-controlled, phase 2 trial of BMS-986020, a lysophosphatidic acid receptor antagonist for the treatment of idiopathic pulmonary fibrosis. Chest 154, 1061-1069. https://doi.org/10.1016/j.chest.2018.08.1058
  29. Santos-Nogueira, E., Lopez-Serrano, C., Hernandez, J., Lago, N., Astudillo, A. M., Balsinde, J., Estivill-Torrus, G., de Fonseca, F. R., Chun, J. and Lopez-Vales, R. (2015) Activation of lysophosphatidic acid receptor type 1 contributes to pathophysiology of spinal cord injury. J. Neurosci. 35, 10224-10235. https://doi.org/10.1523/JNEUROSCI.4703-14.2015
  30. Sapkota, A. and Choi, J. W. (2022) Oleanolic acid provides neuroprotection against ischemic stroke through the inhibition of microglial activation and NLRP3 inflammasome activation. Biomol. Ther. (Seoul) 30, 55-63. https://doi.org/10.4062/biomolther.2021.154
  31. Sapkota, A., Gaire, B. P., Kang, M. G. and Choi, J. W. (2019) S1P2 contributes to microglial activation and M1 polarization following cerebral ischemia through ERK1/2 and JNK. Sci. Rep. 9, 12106. https://doi.org/10.1038/s41598-019-48609-z
  32. Sapkota, A., Lee, C. H., Park, S. J. and Choi, J. W. (2020a) Lysophosphatidic acid receptor 5 plays a pathogenic role in brain damage after focal cerebral ischemia by modulating neuroinflammatory responses. Cells 9, 1446.
  33. Sapkota, A., Park, S. J. and Choi, J. W. (2020b) Inhibition of LPA5 activity provides long-term neuroprotection in mice with brain ischemic stroke. Biomol. Ther. (Seoul) 28, 512-518. https://doi.org/10.4062/biomolther.2020.159
  34. Stoddard, N. C. and Chun, J. (2015) Promising pharmacological directions in the world of lysophosphatidic acid signaling. Biomol. Ther. (Seoul) 23, 1-11. https://doi.org/10.4062/biomolther.2014.109
  35. Vergadi, E., Ieronymaki, E., Lyroni, K., Vaporidi, K. and Tsatsanis, C. (2017) Akt signaling pathway in macrophage activation and M1/M2 polarization. J. Immunol. 198, 1006-1014. https://doi.org/10.4049/jimmunol.1601515
  36. Xiao, D., Su, X., Gao, H., Li, X. and Qu, Y. (2021) The roles of LPAR1 in central nervous system disorders and diseases. Front. Neurosci. 15, 710473.
  37. Yanagida, K. and Shimizu, T. (2023) Lysophosphatidic acid, a simple phospholipid with myriad functions. Pharmacol. Ther. 246, 108421.
  38. Yenari, M. A., Kauppinen, T. M. and Swanson, R. A. (2010) Microglial activation in stroke: therapeutic targets. Neurotherapeutics 7, 378-391. https://doi.org/10.1016/j.nurt.2010.07.005
  39. Zaghloul, N., Kurepa, D., Bader, M. Y., Nagy, N. and Ahmed, M. N. (2020) Prophylactic inhibition of NF-κB expression in microglia leads to attenuation of hypoxic ischemic injury of the immature brain. J. Neuroinflamm. 17, 365.
  40. Zhang, W., Tian, T., Gong, S. X., Huang, W. Q., Zhou, Q. Y., Wang, A. P. and Tian, Y. (2021) Microglia-associated neuroinflammation is apotential therapeutic target for ischemic stroke. Neural Regen. Res. 16, 6-11. https://doi.org/10.4103/1673-5374.286954
  41. Zhang, Y., Lan, J., Zhao, D., Ruan, C., Zhou, J., Tan, H. and Bao, Y. (2023) Netrin-1 upregulates GPX4 and prevents ferroptosis after traumatic brain injury via the UNC5B/Nrf2 signaling pathway. CNS Neurosci. Ther. 29, 216-227. https://doi.org/10.1111/cns.13997
  42. Zhu, Z., Fu, Y., Tian, D., Sun, N., Han, W., Chang, G., Dong, Y., Xu, X., Liu, Q., Huang, D. and Shi, F. D. (2015) Combination of the immune modulator fingolimod with alteplase in acute ischemic stroke: a pilot trial. Circulation 132, 1104-1112. https://doi.org/10.1161/CIRCULATIONAHA.115.016371