Acknowledgement
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (Grant No. 2020R1C1C1008852, 2021R1C1C1012076, 2021M3E5E3080529, and 2021R1A6A1A0304429).
References
- Bajda, M., Guzior, N., Ignasik, M. and Malawska, B. (2011) Multi-target-directed ligands in Alzheimer's disease treatment. Curr. Med. Chem. 18, 4949-4975. https://doi.org/10.2174/092986711797535245
- Bin Saifullah, M. A., Nagai, T., Kuroda, K., Wulaer, B., Nabeshima, T., Kaibuchi, K. and Yamada, K. (2018) Cell type-specific activation of mitogen-activated protein kinase in D1 receptor-expressing neurons of the nucleus accumbens potentiates stimulus-reward learning in mice. Sci. Rep. 8, 14413.
- Bu, X. N., Huang, P., Qi, Z. F., Zhang, N., Han, S., Fang, L. and Li, J. F. (2007) Cell type-specific activation of p38 MAPK in the brain regions of hypoxic preconditioned mice. Neurochem. Int. 51, 459-466. https://doi.org/10.1016/j.neuint.2007.04.028
- Calabrese, V., Mancuso, C., Calvani, M., Rizzarelli, E., Butterfield, D. A. and Stella, A. M. G. (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 8, 766-775. https://doi.org/10.1038/nrn2214
- Chan, E. D. and Riches, D. W. H. (2001) IFN-γ+LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38 in a mouse macrophage cell line. Am. J. Physiol. Cell Physiol. 280, C441-C450. https://doi.org/10.1152/ajpcell.2001.280.3.C441
- Chitnis, T. and Weiner, H. L. (2017) CNS inflammation and neurodegeneration. J. Clin. Invest. 127, 3577-3587. https://doi.org/10.1172/JCI90609
- Ferruzzi, M. G., Lobo, J. K., Janle, E. M., Cooper, B., Simon, J. E., Wu, Q. L., Welch, C., Ho, L., Weaver, C. and Pasinetti, G. M. (2009) Bioavailability of gallic acid and catechins from grape seed polyphenol extract is improved by repeated dosing in rats: implications for treatment in Alzheimer's disease. J. Alzheimers Dis. 18, 113-124. https://doi.org/10.3233/JAD-2009-1135
- Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C. and Gage, F. H. (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918-934. https://doi.org/10.1016/j.cell.2010.02.016
- Halliwell, B. (2006) Oxidative stress and neurodegeneration: where are we now? J. Neurochem. 97, 1634-1658. https://doi.org/10.1111/j.1471-4159.2006.03907.x
- Huang, T. T., Leu, D. and Zou, Y. (2015) Oxidative stress and redox regulation on hippocampal-dependent cognitive functions. Arch. Biochem. Biophys. 576, 2-7. https://doi.org/10.1016/j.abb.2015.03.014
- Jantan, I., Ahmad, W. and Bukhari, S. N. A. (2015) Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Front. Plant Sci. 6, 655.
- Kameyama, T., Nabeshima, T. and Kozawa, T. (1986) Step-down-type passive avoidance-learning and escape-learning method - suitability for experimental amnesia models. J. Pharmacol. Method 16, 39-52. https://doi.org/10.1016/0160-5402(86)90027-6
- Kim, S. H. and Shin, T. Y. (2006) Effect of Dracocephalum argunense on mast-cell-mediated hypersensitivity. Int. Arch. Allergy Immunol. 139, 87-95. https://doi.org/10.1159/000090383
- Kim, S. R., Park, Y., Li, M., Kim, Y. K., Lee, S., Son, S. Y., Lee, S., Lee, J. S., Lee, C. H., Park, H. H., Lee, J. Y., Hong, S., Cho, Y. C., Kim, J. W., Yoo, H. M., Cho, N., Lee, H. S. and Lee, S. H. (2022) Anti-inflammatory effect of Ailanthus altissima (Mill.) Swingle leaves in lipopolysaccharide-stimulated astrocytes. J. Ethnopharmacol. 286, 114258.
- Koeberle, A. and Werz, O. (2014) Multi-target approach for natural products in inflammation. Drug Discov. Today 19, 1871-1882. https://doi.org/10.1016/j.drudis.2014.08.006
- Kumar, A. (2018) Editorial: neuroinflammation and cognition. Front. Aging Neurosci. 10, 413.
- Kwon, Y. K., Choi, S. J., Kim, C. R., Kim, J. K., Kim, Y. J., Choi, J. H., Song, S. W., Kim, C. J., Park, G. G., Park, C. S. and Shin, D. H. (2016) Antioxidant and cognitive-enhancing activities of Arctium lappa L. roots in A beta(1-42)-induced mouse model. Appl. Biol. Chem. 59, 553-565. https://doi.org/10.1007/s13765-016-0195-2
- Lee, K. P., Choi, N. H., Kim, H. S., Ahn, S., Park, I. S. and Lee, D. W. (2018) Anti-neuroinflammatory effects of ethanolic extract of black chokeberry (Aronia melanocapa L.) in lipopolysaccharide-stimulated BV2 cells and ICR mice. Nutr. Res. Pract. 12, 13-19. https://doi.org/10.4162/nrp.2018.12.1.13
- Lim, D. W., Park, J., Jung, J., Kim, S. H., Um, M. Y., Yoon, M., Kim, Y. T., Han, D., Lee, C. and Lee, J. (2020) Dicaffeoylquinic acids alleviate memory loss via reduction of oxidative stress in stress-hormone-induced depressive mice. Pharmacol. Res. 161, 105252.
- Liu, L., Liu, Y., Zhao, J., Xing, X., Zhang, C. and Meng, H. (2020) Neuroprotective effects of D-(-)-quinic acid on aluminum chloride-induced dementia in rats. Evid. Based Complement. Alternat. Med. 2020, 5602597.
- Liu, T. T., Zhu, X. L., Huang, C. L., Chen, J., Shu, S., Chen, G. Q., Xu, Y. and Hu, Y. M. (2022) ERK inhibition reduces neuronal death and ameliorates inflammatory responses in forebrain-specific knockout mice. FASEB J. 36, e22515.
- Lu, X., Ma, L., Ruan, L., Kong, Y., Mou, H., Zhang, Z., Wang, Z., Wang, J. M. and Le, Y. (2010) Resveratrol differentially modulates inflammatory responses of microglia and astrocytes. J. Neuroinflammation 7, 46.
- Lucas, R. M., Luo, L. and Stow, J. L. (2022) ERK1/2 in immune signalling. Biochem. Soc. Trans. 50,1341-1352. https://doi.org/10.1042/BST20220271
- Park, J. S., Park, E. M., Kim, D. H., Jung, K., Jung, J. S., Lee, E. J., Hyun, J. W., Kang, J. L. and Kim, H. S. (2009) Anti-inflammatory mechanism of ginseng saponins in activated microglia. J. Neuroimmunol. 209, 40-49. https://doi.org/10.1016/j.jneuroim.2009.01.020
- Pittenger, C., Fasano, S., Mazzocchi-Jones, D., Dunnett, S. B., Kandel, E. R. and Brambilla, R. (2006) Impaired bidirectional synaptic plasticity and procedural memory formation in striatum-specific cAMP response element-binding protein-deficient mice. J. Neurosci. 26, 2808-2813. https://doi.org/10.1523/JNEUROSCI.5406-05.2006
- Rebai, O., Belkhir, M., Sanchez-Gomez, M. V., Matute, C., Fattouch, S. and Amri, M. (2017) Differential molecular targets for neuroprotective effect of chlorogenic acid and its related compounds against glutamate induced excitotoxicity and oxidative stress in rat cortical neurons. Neurochem. Res. 42, 3559-3572. https://doi.org/10.1007/s11064-017-2403-9
- Reynolds, A., Laurie, C., Mosley, R. L. and Gendelman, H. E. (2007) Oxidative stress and the pathogenesis of neurodegenerative disorders. Int. Rev. Neurobiol. 82, 297-325. https://doi.org/10.1016/S0074-7742(07)82016-2
- Saha, R. N. and Pahan, K. (2006) Signals for the induction of nitric oxide synthase in astrocytes. Neurochem. Int. 49, 154-163. https://doi.org/10.1016/j.neuint.2006.04.007
- Sandiego, C. M., Gallezot, J. D., Pittman, B., Nabulsi, N., Lim, K., Lin, S. F., Matuskey, D., Lee, J. Y., O'Connor, K. C., Huang, Y., Carson, R. E., Hannestad, J. and Cosgrove, K. P. (2015) Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc. Natl. Acad. Sci. U. S. A. 112, 12468-12473. https://doi.org/10.1073/pnas.1511003112
- von Bartheld, C. S., Bahney, J. and Herculano-Houzel, S. (2016) The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J. Comp. Neurol. 524, 3865-3895. https://doi.org/10.1002/cne.24040
- Wang, Z. Q., Wu, D. C., Huang, F. P. and Yang, G. Y. (2004) Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Res. 996, 55-66. https://doi.org/10.1016/j.brainres.2003.09.074
- Zhang, G., He, J. L., Xie, X. Y. and Yu, C. (2012) LPS-induced iNOS expression in N9 microglial cells is suppressed by geniposide via ERK, p38 and nuclear factor-κB signaling pathways. Int. J. Mol. Med. 30, 561-568. https://doi.org/10.3892/ijmm.2012.1030
- Zhang, Y. J., Wu, L., Zhang, Q. L., Li, J., Yin, F. X. and Yuan, Y. (2011) Pharmacokinetics of phenolic compounds of Danshen extract in rat blood and brain by microdialysis sampling. J. Ethnopharmacol. 136, 129-136. https://doi.org/10.1016/j.jep.2011.04.023
- Zhao, J., Bi, W., Xiao, S., Lan, X., Cheng, X., Zhang, J., Lu, D., Wei, W., Wang, Y., Li, H., Fu, Y. and Zhu, L. (2019) Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci. Rep. 9, 5790.