DOI QR코드

DOI QR Code

국내 갈매나무과 13종에 대한 부위별 물 추출물의 면역 증진 활성

Immune-enhancing Activity of Water Extracts for Each Part of 13 Species (Rhamnaceae) in Korea

  • 정대희 (국립산림과학원 산림약용자원연구소) ;
  • 최민영 (국립산림과학원 산림약용자원연구소) ;
  • 박광훈 (국립산림과학원 산림약용자원연구소)
  • Dae Hui Jeong (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Min Yeong Choi (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Gwang Hun Park (Forest Medicinal Resources Research Center, National Institute of Forest Science)
  • 투고 : 2023.09.06
  • 심사 : 2023.11.08
  • 발행 : 2024.02.01

초록

본 연구에서는 국내 자생하고 있는 갈매나무과 식물 13종에 대한 부위별(잎, 가지, 열매) 물 추출물의 NO 생성능을 통하여 면역증진 활성을 측정하여 기능성을 검토하였다. 망개나무, 헛개나무, 까마귀베개, 산황나무, 갈매나무, 참갈매나무, 상동나무 등에서 50% 이상 NO 생성능을 보여줌으로써 대식세포 활성화를 검증하였다. 또한 PCR 전기영동을 통하여 면역증진과 관련된 cytokine인 iNOS, COX-2, IL-1β, IL-6, TNF-α의 발현을 확인하였다. 본 연구를 통해 갈매나무과 분류군들의 부위별 NO 생성능, mRNA 발현 등과 같은 면역 활성에 대한 과학적 근거를 제시할 수 있었고, 이는 면역증진 관련 소재 발굴 및 제품 개발에 기초자료로 활용할 수 있을 것으로 판단된다.

This studied the immune-enhancing activity properties of water extracts from the leaves, branches, and fruit of 13 species (Rhamnaceae) collected during the bearing season (Berchemia berchemiifolia, B. floribunda, Hovenia dulcis, Paliurus ramosissimus, Rhamnella franguloides, Rhamnus crenata, R. davurica, R. koraiensis, R. parvifolia, R. ussuriensis, R. yoshinoi, Sageretia thea, and Ziziphus jujube). Immune-enhancing activity were studied using the nitric oxide (NO) production in RAW264.7 cells. Extracts of B. berchemiifolia, H. dulcis, R. franguloides, R. crenata, R. davurica, R. ussuriensis and S. thea showed strong immune-enhancing activity through NO production. In addition, the expression of immune enhancement-related cytokine genes (NOS, COX-2, IL-1β, IL-6 and TNF-α) were confirmed through PCR-electrophoresis. The results of this study suggest that Rhamnaceae extracts can be used as natural antioxidants and immune enhancer.

키워드

과제정보

본 연구는 2020년도 국립산림과학원 일반연구과제 '갈매나무과 식물의 항염증 물질 탐색 및 약리기전 연구(과제번호: FP0400-2019-01)' 의해 이루어진 것으로 이에 감사드립니다.

참고문헌

  1. Anggriani, N., M.Z. Ndii, R. Amelia, W. Suryaningrat and M.A. Aji Pratama. 2022. A mathematical COVID-19 model considering asymptomatic and symptomatic classes with waning immunity. Alex. Eng. J. 61(1):113-124.
  2. Apetoh, L., F. Ghiringhelli, A. Tesniere, M. Obeid, C. Ortiz, A. Criollo and L. Zitvogel. 2017. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13(9):1050-1059.
  3. Barbara, J.A., X. Van Ostade and A.F. Lopez. 1996. Tumour necrosis factor-alpha (TNF-α): the good, the bad and potentially very effective. Immunol. Cell Biol. 74(5):434-443. https://doi.org/10.1038/icb.1996.73
  4. Blanco-Melo, D., B.E. Nilsson-Payant, W.C. Liu, S. Uhl, D. Hoagland, R. Moller and R.A. Albrecht. 2020. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181(5):1036-1045. https://doi.org/10.1016/j.cell.2020.04.026
  5. Bohlen, H.J. 2015. Nitric oxide and the cardiovascular system. Compr. Physiol. 5(2):808-823.
  6. Chang, C.S. and H. Kim. 2001. The distribution of the woody plants of South Korea based on herbarium (SNUA) material of the arboretum (VII) - Rhamnaceae-. Bull. Seoul Natl. Univ. Arbor. 21:1-15.
  7. Choo, G.C. 1992. Systematic studies of the family Rhamnaceae in Korea. Department of Forestry, Ph.D. Thesis, Konkuk Univ., Korea. pp. 22-70.
  8. Choo, G.C., S.I. Kim, Y. Chung and S. Lee. 1993. A palynotaxonomic study of the Korean Rhamnaceae. Korean J. Pl. Taxon. 23(3):175-188 (in Korean). https://doi.org/10.11110/kjpt.1993.23.3.175
  9. Eo, H.J, G.H. Park and J.B. Jeong. 2021. In vitro macrophage activation by Sageretia thea fruits through TLR2/TLR4-dependent activation of MAPK, NF-κB and PI3K/AKT signaling in RAW264.7 cells. Food Agric. Immunol. 32(1):15-32. https://doi.org/10.1080/09540105.2020.1857339
  10. Geum, N.G., H.J. Eo, H.J. Kim, G.H. Park, H.J. Son and J.B. Jeong. 2020. Immune-enhancing activity of Hydrangea macrophylla subsp. serrata leaves through TLR4/ROS-dependent activation of JNK and NF-κB in RAW264.7 cells and immunosuppressed mice. J. Funct. Foods 73:104139.
  11. Hirayama, D., T. Iida and H. Nakase. 2018. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int. J. Mol. Sci. 19(1):92.
  12. Ji, S.Y., D.H. Kwon, H.J. Hwang and Y.H. Choi. 2023. Evaluation of immune enhancing activity of luthione, a reduced glutathione, in RAW 264.7 macrophages. J. Life Sci. 33(5):397-405 (in Korean).
  13. Kang, Y.G., H.J. Eo, D.S. Kim, Y.K. Park, J.H. Song and G.H. Park. 2020. Berchemia floribunda-mediated proteasomal degradation of cyclin D1 via GSK3β-dependent threonine-286 phosphorylation in human colorectal cancer cells. Korean J. Plant Res. 33(4):271-278 (in Korean).
  14. Kim, D.S., H.J. Eo, Y.G. Kang and G.H. Park. 2021. Anti-inflammatory effect of Berchemia berchemiae folia leaves through inhibition of NF-κB and MAPK signaling activation in LPS-stimulated RAW264.7 cells. Korean J. Plant Res. 34:31-36 (in Korean).
  15. Kim, H.N., G.H. Park, J.D. Kim, S.B. Park, H.J. Eo and J.B. Jeong. 2019a. Effect of the extracts from the leaves and branches of Sageretia thea on β-catenin proteasomal degradation in human colorectal and lung cancer cells. Korean J. Plant Res. 32(2):153-159 (in Korean).
  16. Kim, H.N., G.H. Park, S.B. Park, J.D. Kim, H.J. Eo, H.J. Son, J.H. Song and J.B. Jeong. 2019b. Sageretia thea inhibits iflammation through suppression of NF-κB and MAPK and activation of Nrf2/HO-1signaling pathways in RAW264.7 cell. Am. J. Chin. Med. 47(2):385-403. https://doi.org/10.1142/S0192415X19500198
  17. Kim, S.M., S.H. Kang, J.Y. Ma and J.H. Kim. 2006. A study on the extraction and efficacy of bioactive Compound from Hovenia dulcis. Korean J. Biotechnol. Bioeng. 21(1):11-15 (in Korean).
  18. Ma, Q., S. LI, C. Bi, Z. Hao, C. Sun and N. Ye. 2017. Complete chloroplast genome sequence of a major economic species, Ziziphus jujube (Rhamnaceae). Curr. Genet. 63(1):117-129.
  19. Marshall, J.S., R. Warrington, W. Watson and H.L. Kim. 2018. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 14(2):49.
  20. Medan, D. and C. Schirarend. 2004. Rhamnaceae. In Kubitzki, K. (ed.), The Families and Genera of Vascular Plants. Vol. VI. Springer, New York, NY (USA). pp. 320-338.
  21. Medzhitov, R. 2007. Recognition of microorganisms and activation of the immune response. Nature 449:819-826. https://doi.org/10.1038/nature06246
  22. Medzhitov, R. and C. Janeway. 2000. Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173:89-97. https://doi.org/10.1034/j.1600-065X.2000.917309.x
  23. Mills, C.D. and K. Ley. 2014. M1 and M2 macrophages: The chicken and the egg of immunity. J. Innate Immun. 6(6):716-726. https://doi.org/10.1159/000364945
  24. Mills, C.D., L.L. Lenz and K. Ley. 2015. Macrophages at the fork in the road to health or disease. Front. Immunol. 6:59.
  25. Monmai, C., A.Y. Jang, J.E. Kim, S.M. Lee, S. You, S. Kang and W.J Park. 2020. Immunomodulatory activities of body wall fatty acids extracted from Halocynthia aurantium on RAW264.7 cells. J. Microbiol. Biotechnol. 30(12):1927-1936.
  26. Namkoong, S., S.A. Jang, E.H. Sohn, J.P. Bak, E. Sohn, H.J. Koo, W.J. Yoon, J.E. Kwon, Y.J. Jeong, X. Meng, H.S. Han and S.C. Kang. 2015. Comparative study of Litsea japonica leaf and fruit extract on the anti-inflammatory effects. Korean J. Plant Res. 28(2):145-152 (in Korean). https://doi.org/10.7732/kjpr.2015.28.2.145
  27. Pedersen, S.F. and Y.C. Ho. 2020. SARS-CoV-2: a storm is raging. J. Clin. Investig. 130(5):2202-2205.
  28. Prichard, E.C. 1955. Morphological studies in Rhamnaceae. J. Elisha Mitchell Sci. Soc. 71(1):82-106.
  29. Radak, Z., H. Naito and A.W. Taylor. 2012. Nitric Oxide: Is it the cause of muscle soreness?. Nitric Oxide 26(2):89-94. https://doi.org/10.1016/j.niox.2011.12.005
  30. Seillet, C., G.T. Belz and L.A. Mielke. 2014. Complexity of cytokine network regulation of innate lymphoid cells in protective immunity. Cytokine 70(1):1-10. https://doi.org/10.1016/j.cyto.2014.06.002
  31. Sharma, J.N., A. Al-Omran and S.S. Parvathy. 2007. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15(6):252-259. https://doi.org/10.1007/s10787-007-0013-x
  32. Shen, C.Y., W.L. Zhang and J.G. Jiang. 2017. Immune-enhancing activity of polysaccharides from Hibiscus sabdariffa Linn. via MAPK and NF-kB signaling pathways in RAW264.7 cells. J. Funct. Foods 34:118-129.
  33. Sladkova, T. and F. Kostolansky. 2006. The role of cytokines in the immune response to influenza A virus infection. Acta Virol. 50(3):151-162.
  34. Sun, L., X. Wang, J. Saredy, Z. Yuan, X. Yang and H. Wang. 2020. Innate-adaptive immunity interplay and redox regulation in immune response. Redox Biol. 37:101759.
  35. Tripathi, P., L. Kashyap and V. Singh. 2007. The role of nitric oxide in inflammatory reactions. FEMS Immunol. Med. Microbiol. 51(3):443-452.
  36. Wagner, H. 1990. Search for plant derived natural products with immunostimulatory activity (recent advances). Pure & Appl. Chem. 62(7):1217-1222.
  37. Wauters, E., K. Thevissen, C. Wouters, F.M. Bosisio, F. De Smet, J. Gunst and A.D. Garg. 2020. Establishing a unified COVID-19 "immunome": Integrating coronavirus pathogenesis and host immunopathology. Front. Immunol. 11:1642.
  38. Woo, H.S., S.M. Lee, J.D. Heo, M.S. Lee, Y.S. Kim and D.W. Kim. 2018. Anti-inflammatory activity of extracts of hovenia dulcis on lipopolysaccharides-stimulated RAW264.7 cells. Korean J. Plant Res. 31(5):466-477 (in Korean).
  39. Xue, Q., Y. Yan, R. Zhang and H. Xiong. 2018. Regulation of iNOS on immune cells and its role in diseases. Int. J. Mol. Sci. 19(2):3805.
  40. Yoo, S.A., O.K. Kim, D.E. Nam, Y. Kim, H. Baek and W. Jun. 2014. Immunomodulatory effects of fermented Curcuma longa L. extracts on RAW264.7 cells. J. Korean Soc. Food Sci. Nutr. 43(2):216-223 (in Korean). https://doi.org/10.3746/jkfn.2014.43.2.216