DOI QR코드

DOI QR Code

H2O2 산화제를 이용한 δ-FeOOH의 합성과 입자 크기 제어

Synthesis and Particle Size Control of δ-FeOOH Using H2O2 Oxidizing Agent

  • Seongmin Shin (Department of Electrical Engineering, Gachon University) ;
  • Kyunghwan Kim (Department of Electrical Engineering, Gachon University) ;
  • Jeongsoo Hong (Department of Electrical Engineering, Gachon University)
  • 투고 : 2024.01.22
  • 심사 : 2024.01.29
  • 발행 : 2024.05.01

초록

In this study, Iron (III) oxide-hydroxide (δ-FeOOH) was successfully synthesized using hydrogen peroxide (H2O2) as an oxidizing agent. The synthesis of δ-FeOOH was carried out by controlling the amount of H2O2, and pure δ-FeOOH was successfully synthesized in ranges from 0.2 mL to 0.6 mL of H2O2. The size of the synthesized δ-FeOOH particles was compared by controlling the amount of oxidant H2O2. The average particle size of the synthesized pure δ-FeOOH particles increased from 875.1 nm to 897.2 nm as the amount of H2O2 was increased. The optical properties of δ-FeOOH synthesized under these specific conditions were investigated. All δ-FeOOH showed a similar trend of increasing and decreasing light absorption from 800 nm to 400 nm, although there was a slight difference in the amount of light absorption, with the largest amount of light absorption at 410 nm. The band gap energy of δ-FeOOH through the Tauc plot method was about 2.1~2.2 eV when H2O2 was 0.2~1.4mL. With a sufficient small particle size, simple control of that particle size, and a small band gap energy enough to absorb light in the visible spectrum, δ-FeOOH could be useful in a variety of applications, including photoelectrochemistry and battery electrodes.

키워드

과제정보

이 연구는 2023년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원(RS-2023-00227306) 및 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012451, 2022년 산업혁신인재성장지원사업).

참고문헌

  1. X. Song and J. F. Boily, Environ. Sci. Technol., 47, 9241 (2013). doi: https://doi.org/10.1021/es4020597 
  2. T. Ishikawa, S. Miyamoto, K. Kandori, and T. Nakayama, Corros. Sci., 47, 2510 (2005). doi: https://doi.org/10.1016/j.corsci.2004.10.016 
  3. A. N. Christensen, T. R. Jensen, C.R.H. Bahl, and E. DiMasi, J. Solid State Chem., 180, 1431 (2007). doi: https://doi.org/10.1016/j.jssc.2007.01.032 
  4. J. Fan, Z. Zhao, Z. Ding, and J. Liu, RSC Adv., 8, 7269 (2018). doi: https://doi.org/10.1039/C7RA12615H 
  5. X. Liu, G. Qiu, A. Yan, Z. Wang, and X. Li, J. Alloys Compd., 433, 216 (2007). doi: https://doi.org/10.1016/j.jallcom.2006.06.029 
  6. X. Wang, X. Chen, L. Gao, H. Zheng, M. Ji, C. Tang, T. Shen, and Z. Zhang, J. Mater. Chem., 14, 905 (2004). doi: https://doi.org/10.1039/B310722A 
  7. W. D. Chemelewski, H. C. Lee, J. F. Lin, A. J. Bard, and C. B. Mullins, J. Am. Chem. Soc., 136, 2843 (2014). doi: https://doi.org/10.1021/ja411835a 
  8. H. Liu, H. Guo, P. Li, and Y. Wei, J. Phys. Chem. Solids, 70, 186 (2009). doi: https://doi.org/10.1016/j.jpcs.2008.10.001 
  9. I. V. Korolkov, A. A. Mashentseva, O. Guven, D. T. Niyazova, M. Barsbay, and M. V. Zdorovets, Polym. Degrad. Stab., 107, 150 (2014). doi: https://doi.org/10.1016/j.polymdegradstab.2014.05.008 
  10. R. Nistico, Bol. Soc. Esp. Ceram. Vidrio, 60, 29 (2021). doi: https://doi.org/10.1016/j.bsecv.2020.01.011 
  11. B. Xu and N. D. Chasteen, J. Biol. Chem., 266, 19965 (1991). doi: https://doi.org/10.1016/S0021-9258(18)54877-8 
  12. S. Gu, Z. Yang, Z. Chen, H. Wang, H. Liu, W. Zhang, and C. You, Fuel, 305, 121444 (2021). doi: https://doi.org/10.1016/j.fuel.2021.121444 
  13. I.S.X. Pinto, P.H.V.V. Pacheco, J. V. Coelho, E. Lorencon, J. D. Ardisson, J. D. Fabris, P. P. de Souza, K.W.H. Krambrock, L.C.A. Oliveira, and M. C. Pereira, Appl. Catal., B, 119, 175 (2012). doi: https://doi.org/10.1016/j.apcatb.2012.02.026 
  14. N. Murakami, T. Matsuo, T. Tsubota, and T. Ohno, Catal. Commun., 12, 341 (2011). doi: https://doi.org/10.1016/j.catcom.2010.10.012 
  15. M.C.S. Faria, R. S. Rosemberg, C. A. Bomfeti, D. S. Monteiro, F. Barbosa, L.C.A. Oliveira, M. Rodriguez, M. C. Pereira, and J. L. Rodrigues, Chem. Eng. J., 237, 47 (2014). doi: https://doi.org/10.1016/j.cej.2013.10.006 
  16. L. Hao, T. Zheng, J. Jiang, Q. Hu, X. Li, and P. Wang, Rsc Adv., 5, 10723 (2015). doi: https://doi.org/10.1039/C4RA11901K 
  17. J.M.R. Genin, C. Ruby, A. Gehin, and P. Refait, C. R. Geosci., 338, 433 (2006). doi: https://doi.org/10.1016/j.crte.2006.04.004 
  18. Y. Yoon, K. I. Katsumata, N. Suzuki, K. Nakata, C. Terashima, K. H. Kim, A. Fujishima, and J. Hong, ACS Omega, 6, 30562 (2021). doi: https://doi.org/10.1021/acsomega.1c04251