DOI QR코드

DOI QR Code

Analysis of Influence Factors on Hydrogen Embrittlement of Pipe Steel according to Hydrogen Pipeline Operating Conditions

수소배관 운영 조건에 따른 배관강이 수소취성에 미치는 영향 인자 분석

  • JONGHYUN BAEK (KOGAS Research Institute, Korea Gas Corporation) ;
  • YUNCHAN JANG (KOGAS Research Institute, Korea Gas Corporation) ;
  • CHEOLMAN KIM (KOGAS Research Institute, Korea Gas Corporation)
  • 백종현 (한국가스공사 가스연구원) ;
  • 장윤찬 (한국가스공사 가스연구원) ;
  • 김철만 (한국가스공사 가스연구원)
  • Received : 2024.03.04
  • Accepted : 2024.04.23
  • Published : 2024.04.30

Abstract

Pipeline steels for hydrogen transmission may cause hydrogen embrittlement due to absorption and diffusion of hydrogen through metals. Hydrogen pipes exhibited similar mechanical properties to atmospheric conditions in terms of tensile and yield strength in a hydrogen atmosphere. This paper aims to provide relevant information regarding hydrogen embrittlement in hydrogen transmission pipeline.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호: RS-2023-00245737, 과제명: 수소도시용 수소배관망 국산화 및 실증기술개발).

References

  1. International Energy Agency (IEA), "The future of hydrogen: seizing today's opportunities", IEA, 2019. Retrieved from https://www.iea.org/reports/the-future-of-hydrogen. 
  2. International Renewable Energy Agency (IRENA), "Hydrogen from renewable power: technology outlook for the energy transition", IRENA, 2018. Retrieved from https://www.irena.org/publications/2018/Sep/Hydrogen-from-renewable-power. 
  3. C. Kim, G. Kim, and H. Kim, "Analysis of domestic and for eign policy and technology trends for hydrogen industry development", Journal of Hydrogen and New Energy, Vol. 34, No. 2, 2023, pp. 122-131, doi: https://doi.org/10.7316/JHNE.2023.34.2.122. 
  4. J. E. Shin, "Hydrogen policy trends and current status of hydrogen technology development by value chain", Journal of Hydrogen and New Energy, Vol. 34, No. 6, 2023, pp. 562-574, doi: https://doi.org/10.7316/JHNE.2023.34.6.562. 
  5. DNV GL, "Energy transition outlook 2020", DNV GL, 2020. Retrieved from https://www.dnv.co.kr/article/energy-transition-outlook-2020-download-185170/. 
  6. Hydrogen Council, "Path to hydrogen competitiveness: a cost perspective", Hydrogen Council, 2020. Retrieved from https://hydrogencouncil.com/en/path-to-hydrogen-competitiveness-a-cost-perspective/. 
  7. European Hydrogen Backbone (EHB), "European hydrogen backbone, April 2022", EHB, 2022. Retrieved from https://ehb.eu/page/publications#dit-is-de-downloadomschrijving. 
  8. G. Tezel and R. Hensgens, "HyWay27: hydrogen transmission using the existing natural gas grid?", HyWay27, 2021. Retrieved from https://www.hyway27.nl/uploads/fckconnector/b1b55302-f9eb-532c-91ec-8d2e04b7b661. 
  9. Z. L. Messaoudani, F. Rigas, M. D. B. Hamid, and C. R. C. Hassan, "Hazards, safety and knowledge gaps on hydrogen transmission via natural gas grid: a critical review", International Journal of Hydrogen Energy, Vol. 41, No. 39, 2016, pp. 17511-17525, doi: https://doi.org/10.1016/j.ijhydene.2016.07.171. 
  10. The American Society of Mechanical Engineers (ASME), "Hydrogen piping and pipelines (B31.12)", ASME, 2019. Retrieved from https://www.asme.org/codes-standards/fi nd-codes-standards/b31-12-hydrogen-piping-pipelines. 
  11. The American Petroleum Institute (API), "Line pipe (API 5L)", API, 2018. Retrieved from https://www.api.org/-/me dia/apiwebsite/products-and-services/api-internationalusage-and-deployment-report-2022.pdf. 
  12. ASTM International, "Standard test methods for notched bar impact testing of metallic materials (ASTM E23-23a)", ASTM International, 2007. Retrieved from https://www.astm.org/e0023-23a.html. 
  13. The American Petroleum Institute (API), "API recommended practice 5L3: drop-weight tear tests on line pipe", API, 2014. Retrieved from https://www.api.org/~/media/files/publications/whats%20new/5l3_e4%20pa.pdf. 
  14. Deutscher Verein des Gas- und Wasserfaches (DVGW), "High pressure gas steel pipelines for a design pressure of more than 16 bar: design and construction", DVGW, 2021. Retrieved from https://www.dvgw-regelwerk.de/plus/#technische-regel/dvgw-arbeitsblatt-g-463/dae1b3. 
  15. Institution of Gas Engineers and Managers (IGEM), "IGEM/TD/1 - high pressure hydrogen pipelines", 6th ed, Suppl 2, IGEM, UK, 2021. 
  16. European Industrial Gases Association (EIGA), "Hydrogen pipeline systems: IGC doc 121/14", EIGA, 2014. Retrieved from https://www.eiga.eu/uploads/documents/DOC121.pdf. 
  17. Compressed Gas Association (CGA), "Hydrogen pipeline systems", CGA, 2005. Retrieved from https://portal.cgane t.com/publication/details?id=G-5.6. 
  18. Asia Industrial Gases Association (AIGA), "Hydrogen Pipelines System", AIGA, 2012. Retrieved from https://www.asiaiga.org/uploaded_docs/AIGA%20033_14%20Hydro gen%20pipeline%20systems.pdf. 
  19. E. S. Menon, "Pipeline planning and construction field manual", Gulf Professional Publishing, USA, 
  20. W. H. Johnson, "On some remarkable changes produced in iron and steel by the action of hydrogen and acids", Nature, Vol. 11, 1875, pp. 393, doi: https://doi.org/10.1038/011393a0. 
  21. American Petroleum Institute (API), "API recommended practice 941: Steels for hydrogen service at elevated temper atures and pressures in petroleum refineries and petroche mical plants", API, 2016. Retrieved from https://www.api.org/products-and-services/standards/industry-alert. 
  22. M. L. Martin and P. Sofronis, "Hydrogen-induced cracking and blistering in steels: a review", Journal of Natural Gas Science and Engineering, Vol. 101, 2022, pp. 104547, doi:https://doi.org/10.1016/j.jngse.2022.104547. 
  23. H. Castaneda, E. Sosa, and M. A. Espinosa-Medina, "Film properties and stability influence on impedance distribution during the dissolution process of low-carbon steel exposed to modified alkaline sour environment", Corrosion Science, Vol. 51, No. 4, 2009, pp. 799-806, doi: https://doi.org/10.1016/j.corsci.2009.02.002. 
  24. X. H. Zhao, Y. Han, Z. Q. Bai, and B. Wei, "The experiment research of corrosion behaviour about Ni-based alloys in simulant solution containing H2S/CO2", Electrochimica Acta, Vol. 56, No. 22, 2011, pp. 7725-7731, doi: https://doi.org/10.1016/j.electacta.2011.05.116. 
  25. Y. Wang, J. Gong, and W. Jiang, "A quantitative description on fracture toughness of steels in hydrogen gas", International Journal of Hydrogen Energy, Vol. 38, No. 28, 2013, pp. 12503-12508, doi: https://doi.org/10.1016/j.ijhydene.2013.07.033. 
  26. Y. Kim, Y. J. Chao, M. J. Pechersky, and M. J. Morgan, "On the effect of hydrogen on the fracture toughness of steel", International Journal of Fracture, Vol. 134, 2005, pp. 339-347, doi: https://doi.org/10.1007/s10704-005-1974-7. 
  27. S. Serebrinsky, E. A. Carter, and M. Ortiz, "A quantummechanically informed continuum model of hydrogen embrittlement", Journal of the Mechanics and Physics of Solids, Vol. 52, No. 10, 2004, pp. 2403-2430, doi: https://doi.org/10.1016/j.jmps.2004.02.010. 
  28. B. Sun, D. Wang, X. Lu, D. Wan, D. Ponge, and X. Zhang, "Current challenges and opportunities toward understanding hydrogen embrittlement mechanisms in advanced highstrength steels: a review", Acta Metallurgica Sinica (English Letters), Vol. 34, 2021, pp. 741-754, doi: https://doi.org/10.1007/s40195-021-01233-1. 
  29. S. P. Lynch, "Hydrogen embrittlement (HE) phenomena and mechanisms", Corrosion Reviews, Vol. 30, No. 3-4, 20 12, pp. 105-123, doi: https://doi.org/10.1515/corrrev-2012-0502. 
  30. Y. Zheng, L. Zhang, Q. Shi, C. Zhou, and J. Zheng, " Effects of hydrogen on the mechanical response of X80 pipeline steel subject to high strain rate tensile tests", Fatigue & Fracture of Engineering Materials & Structure, Vol. 43, No. 4, 20 19, pp. 684-697, doi: https://doi.org/10.1111/ffe.13151. 
  31. I. M. Robertson, "The effect of hydrogen on dislocation dynamics", Engineering Fracture Mechanics, Vol. 68, No. 6, 2001, pp. 671-692, doi: https://doi.org/10.1016/S0013-7944(01)00011-X. 
  32. M. L. Martin, M. Dadfarnia, A. Nagao, S. Wang, and P. Sofronis, "Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials", Acta Materialia, Vol. 165, 2019, pp. 734-75 0, doi: https://doi.org/10.1016/j.actamat.2018.12.014. 
  33. S. Yuan, Y. Zhu, L. Zhao, S. Liang, M. Huang, and Z. Li, "Key role of plastic strain gradient in hydrogen transport in poly crystalline materials", International Journal of Plasticity, Vol. 158, 2022, pp. 103409, doi: https://doi.org/10.1016/j.ijplas.2022.103409. 
  34. S. Huang, Y. Zhang, C. Yang, and H. Hu, "Fracture strain model for hydrogen embrittlement based on hydrogen enhanced localized plasticity mechanism", International Journal of Hydrogen Energy, Vol. 45, No. 46, 2020, pp. 22541-2 5554, doi: https://doi.org/10.1016/j.ijhydene.2020.06.271.
  35. ASTM International, "Standard practice for slow strain rate testing to evaluate the susceptibility of metallic materials to environmentally assisted cracking (ASTM G129-21)", ASTM International, 2021. Retrieved from https://www.astm.org/g0129-21.html. 
  36. ASTM International, "Standard test method for determination of susceptibility of metals to embrittlement in hydrogen containing environments at high pressure, high temperature, or both (ASTM G142-98)", ASTM Internationl, 2022. Retrieved from https://www.astm.org/g0142-98r22.html. 
  37. ASTM International, "Standard test methods for tension testing of metallic materials (ASTM E8/E8M-24)", ASTM International, 2024. Retrieved from https://www.astm.org/e0008_e0008m-24.html. 
  38. J. A. Lee and S. Woods, "Hydrogen embrittlement", NASA, 2016. Retrieved from https://ntrs.nasa.gov/citations/20160005654. 
  39. T. T. Nguyen, K. O. Bae, J. Park, S. H. Nahm, and U. B. Baek, "Damage associated with interactions between microstructural characteristics and hydrogen/methane gas mixtures of pipeline steels", International Journal of Hydrogen Energy, Vol. 47, No. 73, 2022, pp. 31499-31520, doi: https://doi.org/10.1016/j.ijhydene.2022.07.060. 
  40. T. Boot, T. A. C. Riemslag, E. T. E. Reinton, P. Liu, C. L. Walters, and V. Popovich, "In-situ hollow sample setup design for mechanical characterisation of gaseous hydrogen embrittlement of pipeline steels and welds", Metals, Vol. 11, No. 8, 2021, pp. 1242, doi: https://doi.org/10.3390/met11081242. 
  41. British Standards Institution (BSI), "Fracture mechanics toughness tests - method for determination of KIc, critical CTOD and critical J values of welds in metallic materials", BSI, 1997. Retrieved from https://knowledge.bsigroup.com/products/fracture-mechanics-toughness-tests-method-for-determination-of-kic-critical-ctod-and-critical-j-values-of-welds-in-metallic-materials?version=standard. 
  42. ASTM International, "Standard test method for measurement of fracture toughness", ASTM International, 2011. Retrieved from https://www.astm.org/e1820-23b.html. 
  43. American Petroleum Institute (API), "Fitness-for-service (API 579)", API, 2016. Retrieved from https://www.api.org/products-and-services/training/calendar/teduc-srlapi-579-fitness-for-service. 
  44. American Society of Mechanical Engineers (ASME), "BPVC section VIII-rules for construction of pressure vessels division 3-alternative rules for construction of high pressure vessels", ASME, 2021. Retrieved from https://www.asme.org/codes-standards/find-codes-standards/bpvc-viii-3-bpvc-section-viii-rules-construction-pressure-vessels-division-3-alternative-rules-construction-high-pressure-vessels/2021/print-book. 
  45. ASTM International, "Standard test method for determining threshold stress intensity factor for environment-assisted cracking of metallic materials (ASTM E1681-03)", ASTM International, 2023. Retrieved from https://www.astm.org/e1681-03r20.html. 
  46. A. Laureys, R. Depraetere, M. Cauwels, T. Depover, S. Hertele, and K. Verbeken, "Use of existing steel pipeline infrastructure for gaseous hydrogen storage and transport: a review of factors affecting hydrogen induced degradation", Journal of Natural Gas Science and Engineering, Vol. 101, 2022, pp. 104534, doi: https://doi.org/10.1016/j.jngse.2022.104534. 
  47. R. P. Gangloff and B. P. Somerday, "Gaseous hydrogen embrittlement of materials in energy technologies: the problem, its characterisation and effects on particular alloy classes", Woodhead Publishing, UK, 2012, pp. 526-561, doi: https://doi.org/10.1533/9780857093899.3.526. 
  48. L. Zhang and R. A. Adey, "Prediction of third party damage failure frequency for pipelines transporting mixtures of natural gas and hydrogen", Hydrogen Tools, 2009. Retrieved from http://conference.ing.unipi.it/ichs2009/images/stories/papers/155.pdf. 
  49. M. Steiner, U. Marewski, and H. Silcher, "DVGW project SyWeSt H2: investigation of steel materials for gas pipelines and plants for assessment of their suitability with Hydrogen", DVGW, 2023. Retrieved from https://www.dvgw.de/medien/dvgw/forschung/berichte/g202006-sywesth2-steel-dvgw.pdf. 
  50. T. T. Nguyen, J. Park, W. S. Kim, S. H. Nahm, and U. B. Beak, "Effect of low partial hydrogen in a mixture with methane on the mechanical properties of X70 pipeline steel", International Journal of Hydrogen Energy, Vol. 45, No. 3, 2020, pp. 2368-2381, doi: https://doi.org/10.1016/j.ijhydene.201 9.11.013. 
  51. F. Zhang, J. Ma, M. Van Auker, M. Rosenfeld, and T. A. Nguyen, "Engineering critical assessment of vintage girth welds", American Gas Association, 2018. Retrieved from https://kiefner.com/wp-content/uploads/2023/12/Engineering-Critical-Assessment-of-Vintage-Girth-Welds-PresentationAGA2018_Presentation_Final.pdf. 
  52. V. Pistone, "Fitness-for-purpose assessment of defect in pipeline girth welds", In: EPRG/NG-18 8th Biennial Joint Technical Meeting on Line Pipe Research; 1991 May 14-17;Paris. 
  53. Y. Y. Wang, M. Liu, D. Horsley, and G. Bauman, "A tiered approach to girth weld defect acceptance criteria for stressbased design of pipelines", In: 2006 International Pipeline Conference; 2006 Sep 25-29; Calgary. New York: American Society of Mechanical Engineers, 2008, pp. 563-574, doi:https://doi.org/10.1115/IPC2006-10491.
  54. H. Pisarski, "Assessment of flaws in pipeline girth welds - a critical review", Welding in the World, Vol. 57, 2013. pp. 933-945, doi: https://doi.org/10.1007/s40194-013-0057-z. 
  55. British Standards Institution (BSI), "Guide to methods for assessing the acceptability of flaws in metallic structures (BS 7910)", BSI, 2019. Retrieved from https://knowledge.bsigroup.com/products/guide-to-methods-for-assessing-the-acceptability-of-flaws-in-metallic-structures?version=standard. 
  56. ASTM International, "Standard practice for presentation of constant amplitude fatigue test results for metallic materials (ASTM E468)", ASTM International, 2024. Retrieved from https://www.astm.org/e0468_e0468m-23a.html. 
  57. ASTM International, "Standard test method for measurement of fatigue crack growth rates (ASTM E647-23b)", ASTM International, 2024. Retrieved from https://www.astm.org/e0647-23b.html. 
  58. M. A. Kappes and T. Perez, "Hydrogen blending in existing natural gas transmission pipelines: a review of hydrogen embrittlement, governing codes, and life prediction methods", Corrosion Reviews, Vol. 41, No. 3, 2023, pp. 319-347, doi: https://doi.org/10.1515/corrrev-2022-0083. 
  59. H. Wang, Z. Tong, G. Zhou, C. Zhang, H. Zhou, Y. Wang, and W. Zheng, "Research and demonstration on hydrogen compatibility of pipelines: a review of current status and challenges", International Journal of Hydrogen Energy, Vol. 47, No. 66, 2022, pp. 28585-28604, doi: https://doi.org/10.1016/j.ijhydene.2022.06.158. 
  60. G. Jia, M. Lei, M. Li, W. Xu, R. Li, Y. Lu, and M. Cai, "Hydrogen embrittlement in hydrogen-blended natural gas transportation systems: a review", International Journal of Hydrogen Energy, Vol. 48, No. 82, 2023, pp. 32137-32157, doi: https://doi.org/10.1016/j.ijhydene.2023.04.266. 
  61. E. Ohaeri, U. Eduok, and J. Szpunar, "Hydrogen related degradation in pipeline steel: a review", International Journal of Hydrogen Energy, Vol. 43, No. 31, 2018, pp. 14584-1461 7, doi: https://doi.org/10.1016/j.ijhydene.2018.06.064. 
  62. X. Wu, H. Zhang, M. Yang, W. Jia, Y. Qiu, and L. Lan, "From the perspective of new technology of blending hydrogen into natural gas pipelines transmission: mechanism, experimental study, and suggestions for further work of hydrogen embrittlement in high-strength pipeline steels", International Journal of Hydrogen Energy, Vol. 47, No. 12, 2022, pp. 8071-8090, doi: https://doi.org/10.1016/j.ijhydene.2021.12.108. 
  63. G. Pluvinage, "Mechanical properties of a wide range of pipe steels under influence of pure hydrogen or hydrogen blended with natural gas", International Journal of Pressure Vessels and Piping, Vol. 190, 2021, pp. 104293, doi: https://doi.org/10.1016/j.ijpvp.2020.104293. 
  64. S. Lipiainen, K. Lipiainen, A. Ahola, and E. Vakkilainen, "Use of existing gas infrastructure in European hydrogen economy", International Journal of Hydrogen Energy, Vol. 48, No. 80, 2023, pp. 31317-31329, doi: https://doi.org/10.1016/j.ijhydene.2023.04.283. 
  65. A. Campari, F. Ustolin, A. Alvaro, and N. Paltrinieri, "A review on hydrogen embrittlement and risk-based inspection of hydrogen technologies", International Journal of Hydrogen Energy, Vol. 48, No. 90, 2023, pp. 35316-35346, doi:https://doi.org/10.1016/j.ijhydene.2023.05.293. 
  66. B. Meng, C. Gu, L. Zhang, C. Zhou, X. Li, Y. Zhao, J. Zheng, X. Chen, and Y. Han, "Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures", International Journal of Hydrogen Energy, Vol. 42, No. 11, 2017, pp. 7404-7412, doi: https://doi.org/10.1016/j.ijhydene.2016.05.145.