• 제목/요약/키워드: Thermal management system

검색결과 379건 처리시간 0.031초

항공기 시스템 레벨 열관리 기술개발 동향 (The Trend of System Level Thermal Management Technology Development for Aero-Vehicles)

  • 김영진;손창민
    • 한국군사과학기술학회지
    • /
    • 제19권1호
    • /
    • pp.35-42
    • /
    • 2016
  • Modern aircraft is facing the increase of power demands and thermal challenges. In accordance with the application of more electric technology and advanced mission requirement, aircraft system requires increase of power generation and it cause increase of internal heat generation. Simultaneously, restrictions have significantly been imposed to the thermal management system. Modern aircraft must maintain low radar observability and infra-red signature. In addition, new composite aircraft skins have reduced the amount of heat that can be rejected to the environment. The combination of these characteristics has increased the challenges faced by thermal management. In order to mitigate the thermal challenges, the concept of system level thermal management should be applied and new modeling and simulation tools need to be developed. To develop and utilize system level thermal management technology, three key points are considered. Firstly, the performance changes of subsystems and components must be assessed at an integrated thermal system. It is because that each subsystem and component interacts with other subsystems or components and it can directly effects on overall system performance. Secondly, system level thermal management requirements and solutions must be evaluated early in conceptual design process as vehicle and propulsion system configuration decisions are being made. Finally, new component level thermal management technologies must focus on reducing heat generation and increasing the availability of heat sinks.

A Simple Thermal Model of Fuel Thermal Management System in Aircraft Engine

  • Youngjin Kim;Jeonghwan Jeon;Gonghoe Gimm
    • 항공우주시스템공학회지
    • /
    • 제17권5호
    • /
    • pp.11-18
    • /
    • 2023
  • The architecture of the Fuel Thermal Management System (FTMS) in a commercial aircraft engine was built to model and simulate the fuel system. The study shows the thermal interactions between the fuel and engine lubrication oil through the mission profile of a high bypass ratio, two-spool turbofan engine. Fuel temperature was monitored as it flowed through each sub-component of the fuel system during the mission. The heat load in the fuel system strongly depended on the fuel flow rate, and was significantly increased for the periods of cruise and descent with decrease of fuel flow rate, rather than for the periods of take-off. Due to the thermal interaction in the pump housing, the fuel temperature at the outlet of the low-pressure pump was increased (4.0, 9.2, and 30.0) % over the case without thermal interaction for take-off, cruise, and descent, respectively.

열매체유 시스템의 안전관리 실태에 관한 연구 (A Study on the Actual Conditions of Safety Management in Thermal Oil System)

  • 이주엽;이근원;우인성
    • 한국안전학회지
    • /
    • 제29권5호
    • /
    • pp.60-66
    • /
    • 2014
  • Depending on the progress of the industrial advances, the use of the thermal oil system in the utility system has been increased, which became an important part in the operation of the plant. However, fire or explosion have occurred due to lack of risk awareness and safety management, more frequently than we know. In this study, by using a questionnaire, actual conditions of safety management in thermal oil system is surveyed and analyzed, it is composed of general, a safety status of the thermal oil system component and the stage of recognition and management in the thermal oil system. These results of this study can be used as basic data to the safety management and the accident prevention of fire or explosion in the workplace.

가정용 연료전지 시스템의 열관리 해석 (Thermal Management Study of PEMFC for Residential Power Generation)

  • 유상석;이영덕;안국영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2839-2844
    • /
    • 2008
  • A PEMFC(proton exchange membrane fuel cell) is a good candidate for residential power generation to be cope with the shortage of fossil fuel and green house gas emission. The attractive benefit of the PEMFC is to produce electric power as well as hot water for home usage. Typically, thermal management of vehicular PEMFC is to reject the heat from the PEMFC to the ambient air. Different from that, the thermal management of PEMFC for RPG is to utilize the heat of PEMFC so that the PEMFC can be operated at its optimal efficiency. In this study, dynamic thermal management system is modeled to understand the response of the thermal management system during dynamic operation. The thermal management system of PEMFC for RPGFC is composed of two cooling circuits, one for controling the fuel cell temperature and the other for heating up the water for home usage. Dynamic responses and operating strategies of the PEMFC system are investigated during load changes.

  • PDF

수소연료전지 자동차의 열관리시스템 성능특성에 관한 연구 (Performance Characteristics of the Thermal Management System for Passenger Hydrogen Fuel Cell Vehicle)

  • 이호성;원종필;조중원;이무연
    • 한국산학기술학회논문지
    • /
    • 제13권3호
    • /
    • pp.986-993
    • /
    • 2012
  • 본 연구의 목적은 수소연료전지 자동차의 열관리시스템 성능특성을 알아보기 위하여 다양한 운전조건 변화에 따른 열전달 성능특성을 고찰하는 것이다. 수소연료전지 자동차의 열관리시스템으로 스택 냉각시스템, 전자장비 냉각시스템, 그리고 냉방시스템의 성능특성 및 상호영향도를 파악하기 위하여 자동차 실 도로 운전조건 변화에 따른 냉방성능 및 전자장비 냉각시스템에 미치는 영향을 파악하였다. 결과적으로, 고속도로 조건에서 냉방시스템 작동 시 수소연료전지 자동차의 스택 냉각시스템의 방열성능은 냉방시스템이 꺼진 경우보다 평균 28.8% 감소하였고, 시내주행 조건에서 수소연료전지 자동차의 전자장비 냉각시스템의 냉각부하는 고속주행 조건보다 약 65.6% 상승하였다.

고분자막전해질 연료전지의 열관리 (Thermal Management of Proton Exchange Membrane Fuel Cell)

  • 유상석;김한석;이상민;이영덕;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.292-300
    • /
    • 2007
  • A dynamic system model of a proton exchange membrane fuel cell(PEMFC) has been developed. The PEMFC of this study has large active area with water cooling in order to simulate the performance of the commercially viable PEMFC system for the transportation. A PEMFC stack model is a transient thermal model which is respond to the dynamic change of the coolant temperature and the flow rate. The dynamic cooling system model has been developed to determine the coolant flow rate and the coolant temperature. Prior to the system level study, thermal management criteria have been set up and brought to the control command of the cooling system. Since the system model is designed to evaluate the effect of thermal management on the system performance, it is attempted to determine the proper control algorithm of the cooling system so that the PEMFC system is working on the thermal management criteria. As a result of simulation, feedback controlled cooling system consumes less power and produce more power comparing with that of conventionally controlled cooling system.

고분자전해질 연료전지 특성 해석을 위한 열관리 계통 모델 기반 HILS 기초 연구 (Model Based Hardware In the Loop Simulation of Thermal Management System for Performance Analysis of Proton Exchange Membrane Fuel Cell)

  • 윤진원;한재영;김경택;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.323-329
    • /
    • 2012
  • A thermal management system of a proton exchange membrane fuel cell is taken charge of controlling the temperature of fuel cell stack by rejection of electrochemically reacted heat. Two major components of thermal management system are heat exchanger and pump which determines required amount of heat. Since the performance and durability of PEMFC system is sensitive to the operating temperature and temperature distribution inside the stack, it is necessary to control the thermal management system properly under guidance of operating strategy. The control study of the thermal management system is able to be boosted up with hardware in the loop simulation which directly connects the plant simulation with real hardware components. In this study, the plant simulation of fuel cell stack has been developed and the simulation model is connected with virtual data acquisition system. And HIL simulator has been developed to control the coolant supply system for the study of PEMFC thermal management system. The virtual data acquisition system and the HIL simulator are developed under LabVIEWTM Platform and the Simulation interface toolkit integrates the fuel cell plant simulator with the virtual DAQ display and HIL simulator.

수소연료전지 자동차 열관리 시스템의 상호 영향도 분석을 위한 실험적 연구 (Experimental Study on the Mutual Influence of Thermal Management System for Hydrogen Fuel Cell Vehicle)

  • 이무연;원종필;조중원;이호성
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.852-858
    • /
    • 2011
  • This paper is aiming to estimate the mutual influence of the stack cooling performances with the operation modes of the thermal management system for the hydrogen fuel cell vehicles. The heat capacity of the thermal management system was measured by varying the operating modes such as stack cooling heat exchanger only (Mode 1), stack cooling and electric devices cooling heat exchangers (Mode 2), and stack cooling and electric devices cooling heat exchangers with an operation of the condenser (Mode 3).As the results, Performance of the thermal management system (TMS) at Mode 3 decreased up to 34.0%, compared with the result of the Mode 1. In addition, in order to optimize the performance of TMS, the entropy change of stack cooling heat exchanger using irreversibility analysis technique was analyzed with the relationship between entropy generation and entering air velocity of the thermal management system.

저온작동 조건에서 자동차용 써모사이폰의 성능특성에 관한 연구 (Study on the Performance Characteristics of the Thermosyphon Used for the Vehicle Operated at Low Temperature Conditions)

  • 임택규;이호성;원종필;조중원;이무연
    • 한국산학기술학회논문지
    • /
    • 제13권2호
    • /
    • pp.510-515
    • /
    • 2012
  • 본 연구의 목적은 심지구조 유무에 따른 자동차에 적용된 써모사이폰의 저온 작동영역에서의 성능 특성을 고찰하는 것이다. 이를 위하여 작동유체로 물을 사용하는 써모사이폰을 제작하였고, 작동유체의 충진량, 심지 적용 유무, 외기온도 변화 그리고 증발부에 열부량 변화에 따른 성능 특성을 파악하였다, 결과적으로 작동유체의 충진량 40%에서 최적의 열전달 성능을 나타내고, 외기온도 증가에 따라 써모사이폰의 열전달 성능이 증가하였다.

모바일 전자장비 냉각용 Micro-CPL내 형상크기변화에 따른 열성능 해석 (Effect of Groove and Channel Size on the Thermal Transport Capacity of Micro-Capillary Pumped Loop for Mobile Electronic Device Cooling System)

  • 김병기;서정세;황건;문석환;배찬효
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.329-334
    • /
    • 2005
  • As more high power wide band gap devices are being utilized. the thermal management issues associated with these devices need to be resolved. High power small devices dissipate excessive heat that must be cooled, but traditional cooling methods are insufficient to provide such a cooling means. This paper will evaluate a micro-capillary pumped loop thermal management system that is incorporated into the shim of the device, taking advantage of phase-change to increase the thermal conductivity of the system. The results of the modeling of the thermal management system will be discussed.

  • PDF