DOI QR코드

DOI QR Code

산림골재 내 불소의 지질학적 분포 연구

Study on Geological Distribution of Fluorine in Forest Aggregate within Korea

  • 정영일 ((재)거창화강석연구센터) ;
  • 김건기 (한국임업진흥원 석재산업실) ;
  • 김순오 (경상국립대학교 자연과학대학 지질과학과 및 기초과학연구소) ;
  • 이상우 ((주)호성 HS환경기술연구소) ;
  • 이진영 (한국지질자원연구원 제4기환경연구센터)
  • Yeong-Il Jeong (Geochang Granite Research Center) ;
  • Kun-Ki Kim (Stone Industry Division, Korea Forestry Promotion Institute) ;
  • Soon-Oh Kim (Department of Geology and Research Institute of Natural Science(RINS), Gyeongsang National University(GNU)) ;
  • Sang-Woo Lee (HS Environmental Technology Research Center, Hosung Inc.) ;
  • Jin-Young Lee (Quaternary Environment Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2024.03.01
  • 심사 : 2024.04.03
  • 발행 : 2024.04.29

초록

본 연구는 우리나라 산림골재 주요 공급원이 될 수 있는 암석 내 불소의 지질학적 분포 특성을 조사하기 위해 22개 시군의 224개 지점에서 산림골재(암석) 시료를 채취하여 불소 농도를 조사하였다. 전국 불소 배경농도는 344 mg/kg으로 암석의 지각 평균불소 농도인 625 mg/kg 보다 현저히 낮으며, 세계 토양 평균 불소 농도인 321 mg/kg 보다는 다소 높았다. 권역별 농도분포는 경기도 394 mg/kg, 강원도 336 mg/kg, 충청도 318 mg/kg, 경상도 289 mg/kg, 전라도 271 mg/kg 순서로 조사되었다. 지체구조에 의한 농도분포는 경기육괴가 396 mg/kg 으로 가장 높았으며, 퇴적분지/화산대인 울릉도가 349 mg/kg, 옥천습곡대 291 mg/kg, 영남육괴 281 mg/kg, 경상분지 259 mg/kg 순서로 높았다. 모암의 성인에 의한 농도분포는 변성암이 362 mg/kg 으로 가장 높았으며, 퇴적암 354 mg/kg, 화성암 328 mg/kg 순서로 조사되었다. 지질시대에 의한 농도분포는 고생대가 394 mg/kg 으로 가장 높았으며, 트라이아스기 391 mg/kg, 선캠브리아시대 368 mg/kg, 쥐라기 359 mg/kg, 시대미상 324 mg/kg, 제4기 314 mg/kg, 백악기 304 mg/kg 순서로 높았다. 암종에 따른 불소 농도분포는 섬록암이 515 mg/kg 으로 가장 높았으며, 편마암류 377 mg/kg, 편암류 344 mg/kg, 천매암 306 mg/kg, 화강암류 305 mg/kg, 석영반암 298 mg/kg 순서로 조사되었다. 본 연구결과를 종합해보면 경기도 지역의 지각을 이루는 경기육괴 내 선캠브리아시대 변성암인 편마암류와 편암류가 높은 농도의 불소를 함유하고 있음을 알 수 있다.

This study was conducted to investigate the geological distribution characteristics of fluorine in rocks, which can be a major resource of forest aggregates in Korea. Samples of forest aggregates were collected from 224 sites in 22 cities and counties for this study. The national background concentration was 344 mg/kg, which was significantly lower than the average fluorine concentration of crustal, which was 625 mg/kg, and slightly higher than the average fluorine concentration of world soil, which was 321 mg/kg. In terms of region and tectonic structure, fluorine concentrations were investigated to be highest in Gyeonggi-do(394 mg/kg) and Gyeonggi massif(396 mg/kg), respectively. The concentration distribution by the origin of the parent rock was in the order of metamorphic rock(362 mg/kg) > sedimentary rock(354 mg/kg) > igneous rock(328 mg/kg), and the concentration distribution by geologic ages was the highest in the Paleozoic at 394 mg/kg. The concentration distribution by rock types was in the order of diorite(515 mg/kg) > gneisses(377 mg/kg) > schists(344 mg/kg) > phyllite(306 mg/kg) > granites(305 mg/kg) > quartz porphyry(298 mg/kg). Consequently, it is speculated that gneisses and schists, Precambrian metamorphic rocks in the Gyeonggi massif that forms the crust of Gyeonggi-do, contain high fluorine concentrations.

키워드

과제정보

이 논문은 한국지질자원연구원에서 수행하고 있는 국토교통부 "2024년 골재자원조사 및 관리 (IP2024-008-2024)"과제를 통해 작성되었습니다. 또한 논문에 대한 세심한 검토와 제안을 주신 심사위원 분들께 감사드립니다.

참고문헌

  1. An, J.S., Kim J.A. and Yoon, H.O. (2013) A Review on the analytical techniques for the determination of fluorine contents in soil and solid phase samples. Journal of Soil and Groundwater Environment, v.18(1), p.112-122. doi: 10.7857/JSGE.2013.18.1.112
  2. Apambire, W.B., Boyle, D.R. and Michel, F.A. (1997) Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana, Environmental. Geology, v.33, p.13-24. doi: 10.1007/s002540050221
  3. Ayoob, S. and Gupta, A.K. (2006) Fluoride in drinking water: A Review on the status and stress rffects. Critical Reviews in Environmental Science and Technology, v.36, p.433-487. doi:10.1080/10643380600678112
  4. Camargo, J.A. (2003) Fluoride toxicity to aquatic organisms: a review. Chemosphere, v.50, p.251-264. doi: 10.1016/s0045-6535(02)00498-8
  5. Chae, G.T., Yun, S.T., Mayer, B., Kim, K.H., Kim, S.Y., Kwon, J.S., Kim, K. and Koh, Y.K. (2007) Fluorine geochemistry in bedrock groundwater of South Korea. Science of the Total Environment, v.385, p.272-283. doi: 10.1016/j.scitotenv.2007.06.038
  6. Choi, D.K. (2013) Tectonic provinces of the Korean Peninsula, Proceedings of the Annual Conference of the Geological Society of Korea. Geol. Soc. Kor., Jeju, Korea, p.22-22.
  7. Cronin, S.J., Manoharan, V., Hedley, M.J. and Lognathan, P. (2000) Fluoride: a review of its fate, bioavailability, and risks of fluorosis in grazed-pasture system in New Zealand. New Zealand Journal of Agricultural Research, v.43(3), p.295-321. doi: 10.1080/00288233.2000.9513430
  8. Dehbandi, R., Moore, F. and Keshavarzi, B. (2018) Geochemical sources, hydrogeochemical behavior, and health risk assessment of fluoride in an endemic fluorosis area, central Iran. Chemosphere, v.193, p.763-776. doi: 10.1016/j.chemosphere.2017.11.021
  9. Edmunds, W.M. and Smedley, P.L. (2013) Fluoride in natural waters, In: O. Selinus, B. Alloway, J.A. Centeno, R.B. Finkelman, R. Fuge, U. Lindh, and P.L. Smedley(eds.), Essentials of medical geology. Elsevier Academic Press, London, UK, p.311-336. doi: 10.1007/978-94-007-4375-5_13
  10. Fawell, J., Bailey, K., Chilton, J., Dahi, E., Fewtrell, L. and Magara, Y. (2006) Fluoride in drinking water, IWA Publishing, London, p.144.
  11. Fuge, R. and Andrews, M.J. (1988) Fluorine in the UK environment, Environ. Geochem. Health, 10, p.96-104. doi: 10.1007/bf01758677
  12. Gao, S., Luo, T.C., Zhang, B.R., Zhang, H.F., Han, Y.W., Hu, Y.K. and Zhao, Z.D. (1998) Chemical composition of the continental crust as revealed by studies in east China. Geochim. Cosmochim. Acta, v.62, p.1959-1975. doi: 10.1016/S0016-7037(98)00121-5
  13. Handa, B.K. (1975) Geochemistry and genesis of fluoride-containing ground waters in India. Groundwater, Ground Water, v.13, p.275-281. doi: 10.1111/j.1745-6584.1975.tb03086.x
  14. Hedrick, J.B. (1995) The global rare-earth cycle. J. Alloys Compds., v.225, p.609-618. doi: 10.1016/0925-8388(94)07134-9
  15. Hem, J.D. (1985) Study and interpretation of the Chemical Characteristics of natural water, 3rd edition, US Geological Survey Water-Supply Paper 2254, University of Virginia, Charlottesville, p.263. doi: 10.3133/wsp2254
  16. Kabata-Pendias, A. and Pendias, H. (1984) Trace elements in soils and plants, CRC Press, Roca Raton, 315.
  17. Lee, J.H., Jeong, J.O., Kim, K.K., Lee, S.W. and Kim, S.O. (2018) Origin of fluorine contained in rocks within the Eulwangsan, Yongyudo. Economic and Environmental Geology, v.51(6), p.521-529. http://dx.doi.org/10.9719/EEG.2018.51.6.521
  18. Lee, J.H., Jeong, J.O., Kim, K.K., Lee, S.W. and Kim, S.O. (2019) Geochemical Study on the Naturally Originating Fluorine Distributed in the Area of Yongyudo and Sammokdo, Incheon. Economic and Environmental Geology, v.52(4), p.275-290. doi: 10.9719/EEG.2019.52.4.275
  19. Lee, J.H., Jeon, J.H., Lee, S.H. and Kim, S.O. (2022) Elucidation of the enrichment mechanism of the naturally originating fluorine within the Eulwangsan, Yongyudo: Focusing on the study of the fault zone. Korean J. Mineral. Petrol., v.35(3), p.367-376.
  20. Lim, G.H., Lee, H.G., Kim, H.S., Noh, H.J., Ko, H.W., Kim, J.I., Jo, H.J. and Kim, H.K. (2018) Journal of Soil and Groundwater Environment, v.23, p.90-103.
  21. Malago, J., Makoba, E. and Muzuka, A.N.N. (2017) Fluoride levels in surface and groundwater in Africa: a review. American Journal of Water Science and Engineering, v.3(1), p.1-17. doi:10.11648/j.ajwse.20170301.11
  22. Na, K.H., Yun, I.C. and Lee, J.B. (2010) The validation study of auto analysis method combined with aqua regia digestion for fluorine of soil. Journal of Soil and Groundwater Environment, v.15, p.8-15.
  23. National Research Council (NRC) (2006) Fluoride in drinking water: a scientific review of EPA's standards, National Academies Press, Washington DC, p.530.
  24. Oh, H.J. and Lee, J.Y. (2003) A study on the characteristical evaluation of metals and fluorine concentrations in the southern part of Seoul. Journal of KoSSGE, v.8, p.68-73.
  25. Ozsvath, D.L. (2009) Fluoride and environmental health:a review. Reviews in Environmental Science and Bio/Technology, v.8, p.59-79. doi: 10.1007/s11157-008-9136-9
  26. Polomski, J., Fluhler, H. and Blaser, P. (1982) Accumulation of airborne fluoride in soils. Journal of Environmental Quality, v.11, p.457-461. doi: 10.2134/jeq1982.00472425001100030028x
  27. Rao, N.C.R. (2003) Fluoride and environment-a review. In: Bunch, M.J.V., Suresh, M., Kumaran, T.V. (eds) Proceedings of third international conference on environment and health. York University, Chennai, India, p.386-399.
  28. Rudnick, R.L. and Gao, S. (2003) Composition of the continental crust, In: R.L. Rudnick(ed.), The Crust, Treatise on Geochemistry, v.3, p.1-64.
  29. Saxena, V.S. and Ahmed, S. (2003) Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environmental Geology, v.43, p.731-736. doi: 10.1007/s00254-002-0672-2
  30. Shaw, D.M., Reilly, G.A., Muysson, J.R., Pattenden, G.E. and Campbell, F.E. (1967) An estimate of the chemical composition of the Canadian Precanbrian shield. Canadian Journal of Earth Sciences, v.4, p.829-853. doi: 10.1139/e67-058
  31. Wang, Y. and Wei, F.S. (1995) Chemistry of elements in the pedosphere environment, China Environmental Science Press, Beijing, China, p.129-144.
  32. Wedepohl, H. (1995) The composition of the continental crust, Geochim. Cosmochim. Acta, v.59, p.1217-1239. doi: 10.1016/0016-7037(95)00038-2
  33. Weinstein, L.H. and Davison, A.W. (2004) Fluorides in the environment: effects on plants and animals, 1st edition, CABI Publishing, Walingford, Oxford, UK.
  34. Yousefi, M., Ghoochani, M. and Mahvi, A.H. (2018) Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran. Ecotoxicology and Environmental Safety, v.148, p.426-430. doi: 10.1016/j.ecoenv.2017.10.057
  35. Zuo, H., Chen, L., Kong, M., Qiu, L., Lu, P., Wu, P., Yang, Y. and Chen, K. (2018) Toxic effects of fluoride on organisms. Life Sciences, v.198, p.18-24. doi: 10.1016/j.lfs.2018.02.001