DOI QR코드

DOI QR Code

인천광역시 및 인근 지역의 건설용 골재 유통현황 분석 연구

Study on the Distribution Status of Construction Aggregates in Incheon Metropolitan City and Nearby Areas

  • 백철승 ((재)한국골재산업연구원 골재자원조사실) ;
  • 유병운 ((재)한국골재산업연구원 골재자원조사실) ;
  • 김건기 (한국임업진흥원 석재산업실) ;
  • 장유정 (한국임업진흥원 석재산업실) ;
  • 이진영 (한국지질자원연구원 제4기환경연구센터)
  • Chul-Seoung Baek (Aggregates Resource Lab, Korea Aggregates Research Institute) ;
  • Byoung-Woon You (Aggregates Resource Lab, Korea Aggregates Research Institute) ;
  • Kun-Ki Kim (Stone Industry Division, Korea Forestry Promotion Institute) ;
  • Yu-Jeong Jang (Stone Industry Division, Korea Forestry Promotion Institute) ;
  • Jin-Young Lee (Quaternary Environment Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2024.02.21
  • 심사 : 2024.03.30
  • 발행 : 2024.04.29

초록

인천광역시와 경기도에 소재한 레미콘 사업장을 대상으로 한 설문조사 결과를 기반으로 골재 운반거리 및 생산형태 분석을 수행하였으며, 골재 유통 특성과 현황을 해석하였다. 그 결과 수요지 도달거리가 20km 이내인 인천, 시흥, 부천, 김포, 시흥 지역은 생산과 타지역간 거래가 많은 양방향 유통형태를 가지며 20~50km인 파주, 용인, 양주, 포천 지역은 인천으로만 골재를 공급하는 단방향 유통형태를 나타내었다. 그리고 생산형태별 유통량 조사결과 인천지역에서 유통되는 자갈의 85% 이상이 건설현장에서 배출되는 암석으로 만든 부순골재로 공급망이 많이 편중된 것으로 나타났다. 이러한 결과들은 장기적으로 골재공급에 부정적인 영향을 줄 것으로 예상되며 적절한 골재 유통시장 형성을 위한 정책적 해결방안이 필요하다.

A survey of concrete plants in Incheon Metropolitan City and Gyeonggi Province was used to conduct an analysis of aggregate transport distance and production forms, as well as to evaluate the features and current status of aggregates distribution. As a result, areas such as Incheon, Siheung, Bucheon, Gimpo, and Siheung, where the distance to the demand points is less than 20 km, exhibited bidirectional distribution whereas Paju, Yongin, Yangju, and Pocheon, with distances ranging from 20 to 50 km is showed a unidirectional distribution pattern supplying aggregates exclusively to Incheon. Survey on manufacturing forms, more than 85% of the gravel dispersed in the Incheon area is made up of crushed aggregates derived from rocks discharged at construction sites indicating a considerable skew in supply chain. These findings are predicted to have a detrimental influence on aggregate supply in the long run, necessitating policy changes targeted at building an optimal aggregate distribution market.

키워드

과제정보

Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (RS-2022-00143644 and IP2024-008-2024).

참고문헌

  1. Lee, J.Y. (2020) Planning for comprehensive management of industrial stone and aggregate resources (JP2020-001-020(1)), Korea institute of Geoscience and mineral resources
  2. Lee, D.Y. (1992) Areal survey of construction materials along the gyung-in river vally, KIGAM Research Report (KR-91-1C), Korea institute of Geoscience and mineral resources
  3. Park, J.I., Choi, M.S. and Kim, M.H. (1993) A fundamental survey study on the supply Behavior and Distribution Structure of Aggregates. Journal of the Architectural Institute of Korea Structure & Construction, v.13(2), p.727-731.
  4. Choi, M.S. and Kim, M.H. (1993) Status of Demand and Supply and Distribution Structure of Aggregates. Journal of the Korea Concrete Institute, v.5(3), p.31-44.
  5. Choi, Y.H., Kim, C.S. and Sung, H.M. (2008) An analysis of distribution channel on aggregate goods. Proceedings of the KOR-KST Conference, 59, p.933-942.
  6. Hong, S.S., Kim, J.Y. and Lee, J.Y. (2015) Trends of Supply and Demand of Aggregate in Korea (I). Jour. Petrol. Soc. Korea, v.24(3), p.253-272. doi: 10.7854/JPSK.2015.24.3.253
  7. Lee, J.Y. and Hong, S.S. (2021) GIS-based Network Analysis for the Understanding of Aggregate Resources Supply-demand and Distribution in 2018. Econ. Environ. Geol., v.54(5), p.515-533. doi: 10.9719/EEG.2021.54.5.515
  8. Robinson, G.R. and Kapo, K.E. (2004) A GIS analysis of suitability for construction aggregate recycling sites using regional transportation network and population density features. Resources. Conservation and Recycling, v.42, p.351-365. doi: 10.1016/j.resconrec.2004.04.009
  9. Kaliampakos, D.C. and Benardos, A.G. (1999) Sustainable Aggregate Quarrying in Athens (Greece): Problems and Solutions Global Conference on Environmental Control in Mining and Metallurgy, Beijing, China, p.182-185.
  10. Drew, L.J., Langer, W.H. and Sachs, J.S. (2002) Environmentalism and natural aggregate mining. Nat. Resour. Res., v.11, p.19-28. doi: 10.1023/A:1014283519471
  11. Escavy, J.I., Herrero, M.J., Lopez, A.F. and Trigos, L. (2022) The progressive distancing of aggregate quarries from the demand areas: Magnitude, causes, and impact on CO2 emissions in Madrid Region (1995-2018). Resources Policy, v.75, p.1-14. doi: 10.1016/j.resourpol.2021.102506
  12. Agioutantis, Z., Komnitsas, K. and Athousaki, A. (2013) Aggregate Transport and Utilization: Ecological Footprint and Environmental Impacts. Bulletin of the Geological Society of Greece, v.47(4), p.1960-1969. doi: 10.12681/bgsg.11005
  13. Goswein, V., Goncalves, A.B., Silvestre, J.D., Freire, F., Habert, G. and Kurda, R. (2018) Transportation matters - does it? GIS-based comparative environmental assessment of concrete mixes with cement, fly ash, natural and recycled aggregates. Resour. Conserv. Recycl., v.137, p.1-10. doi: 10.1016/j.resconrec.2018.05.021
  14. Ioannidou, D., Meylan, G., Sonnemann, G. and Habert, G. (2017) Is gravel becoming scarce? Evaluating the local criticality of construction aggregates. Resour. Conserv. Recycl., v.126, p.25-33. doi: 10.1016/j.resconrec.2017.07.016
  15. Blachowski, J. (2014) Spatial analysis of the mining and transport of rock minerals (aggregates) in the context of regional development. Environ Earth Sci., v.71(3), p.1327-1338. doi: 10.1007/s12665-013-2539-0
  16. Wilson, D., Kieu, M., Sheng, M.S., Sreenivasan, A., Ivory, V. and Sharp, B.A. (2023) Review of Aggregates for Land Transport Infrastructure in New Zealand. Transportation Infrastructure Geotechnology, v.10, p.1186-1207. doi: 10.1007/s40515-022-00259-x
  17. Ministry of Land, Infrastructure and Transport (2021) Aggregates Resource Survey report - Incheon, Korea Institute of Geoscience and Mineral Resources.
  18. Hong, S.S. and Lee, J.Y. (2023) Aggregate of Korea in 2022. Econ. Environ. Geol., v.56(6), p.871-885. doi: 10.9719/EEG.2023.56.6.871
  19. Lee, D.G. and Lee, J.Y. (2021) Sustainable Development Plan for Domestic Forest Aggregate Development according to Transport Distance. Econ. Environ. Geol., v.54(5), p.495-503. doi: 10.9719/EEG.2021.54.5.495