DOI QR코드

DOI QR Code

제주도 및 울릉도에서 산출되는 화산암의 골재로서의 물성 특징

Physical Properties of Volcanic Rocks in Jeju-Ulleung Area as Aggregates

  • 유병운 (한국골재산업연구원 골재자원연구실) ;
  • 백철승 (한국골재산업연구원 골재자원연구실) ;
  • 주계영 (한국골재산업연구원 골재자원연구실)
  • Byoung-Woon You (Aggregate Resource Research Lab, Korea Aggregates Research Institute) ;
  • Chul-Seoung Baek (Aggregate Resource Research Lab, Korea Aggregates Research Institute) ;
  • Kye-Young Joo (Aggregate Resource Research Lab, Korea Aggregates Research Institute)
  • 투고 : 2024.02.25
  • 심사 : 2024.03.25
  • 발행 : 2024.04.29

초록

본 연구는 제주도-울릉도 일대에 분포하는 화산암을 대상으로 골재자원으로서의 물성 특징과 골재자원으로서의 골재품질을 평가하였다. 제주도 지역의 주요 구성 암석은 역암, 화산암 및 화산쇄설암 등이다. 역암은 용암 사이에 협재된 상태로 황적색 또는 회색의 이질퇴적암, 역암, 함각력역암으로 구성되어 있다. 화산암류는 화학성분에 따라 현무암, 조면현무암, 현무암질조면안산암, 조면안산암 및 조면암류로 분류된다. 층서별로 하부에서 상부 순서대로 서귀포층, 조면안산암, 조면현무암(I), 현무암(I), 조면현무암(II), 현무암(II), 조면현무암(III, IV), 조면암, 조면현무암(V, VI), 현무암(III) 및 조면현무암(VII, VIII)으로 구분된다. 울릉도 지역의 기반암은 현무암, 조면암, 조면암질 현무암 및 조면암질 안산암으로 구성되어 있으며, 일부 포놀라이트와 응회암질 쇄설성 화산퇴적암으로 구성되어 있다. 기반암들의 골재품질 평가요소로 안정성, 마모율, 흡수율, 절대건조밀도 및 알칼리 골재 반응도 등이 고려되었다. 연구지역의 화산암류의 골재품질 평가 결과 대부분 골재 품질기준을 만족하는 것으로 나타났으며, 지역별로 물성 특징 및 품질이 다르게 나타났다. 마모율과 절대건조밀도는 유사한 분포 범위를 갖고 있으나, 안정성은 울릉도가, 흡수율은 제주도가 좋은 결과를 보였다. 전체적으로 제주도가 골재로서 더 좋은 품질을 나타내었다. 또한, 알칼리 골재 반응성 시험 결과 전반적으로 두 지역 모두 무해한 골재로 나타났으나, 제주도보다 울릉도 화산암류가 더 양호한 것으로 분석되었다. 골재품질시험은 암석 자갈을 대상으로 개략적으로 수행되지만 유사한 암석이라도 생성환경 및 광물조성에 따라 달라질 수 있다. 따라서 골재자원의 품질을 평가, 분석할 때 광물-암석학적 연구를 병행한다면 더욱 효율적으로 활용이 가능할 것이다.

This study evaluated the physical characteristics and quality of volcanic rocks distributed in the Jeju Island-Ulleung Island area as aggregate resources. The main rocks in the Jeju Island area include conglomerate, volcanic rock, and volcanic rock. Conglomerate is composed of yellow-red or gray heterogeneous sedimentary rock, conglomerate, and encapsulated conglomerate in a state between lavas. Volcanic rocks are classified according to their chemical composition into basalt, trachybasalt, basaltic trachytic andesite, trachytic andesite, and trachyte. By stratigraphy, from bottom to top, Seogwipo Formation, trachyte andesite, trachybasalt (I), basalt (I), trachybasalt (II), basalt (II), trachybasalt (III, IV), trachyte, trachybasalt (V, VI), basalt (III), and trachybasalt (VII, VIII). The bedrock of the Ulleung Island is composed of basalt, trachyte, trachytic basalt, and trachytic andesite, and some phonolite and tuffaceous clastic volcanic sedimentary rock. Aggregate quality evaluation factors of these rocks included soundness, resistance to abrasion, absorption rate, absolute dry density and alkali aggregate reactivity. Most volcanic rock quality results in the study area were found to satisfy aggregate quality standards, and differences in physical properties and quality were observed depending on the area. Resistance to abrasion and absolute dry density have similar distribution ranges, but Ulleung Island showed better soundness and Jeju Island showed better absorption rate. Overall, Jeju Island showed better quality as aggregate. In addition, the alkaline aggregate reactivity test results showed that harmless aggregates existed in both area, but Ulleungdo volcanic rock was found to be more advantageous than Jeju Island volcanic rock. Aggregate quality testing is typically performed simply for each gravel, but even similar rocks can vary depending on their geological origin and mineral composition. Therefore, when evaluating and analyzing aggregate resources, it will be possible to use them more efficiently if the petrological-mineralological research is performed together.

키워드

과제정보

Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (RS-2022-00143644) & Ministry of Land, Infrastructure and Transport "Aggregates Resource Survey and Management Project".

참고문헌

  1. An, D.S. and Baek, C.M. (2021). Application of Warm Mix Asphalt Pavement Using Basalt Aggregate in Jeju Island, International Journal of Highway Engineering, v.23, n.6, p.121-128. DOI : https://doi.org/10.7855/IJHE.2021.23.6.121
  2. Baek, C.S., Seo, J.H., Kim, Y.J., Cho, K.H., Kim, K.K. and Lee, J.Y. (2020) A Fundamental Study on the Potential of Alkali-Aggregate Reaction according to KS F 2545 and ASTM C 1260 Test Methods, Journal of Korean Inst. of Resources Recycling, v.29, n.2, p.18-27. DOI : https://doi.org/10.7844/kirr.2020.29.2.18
  3. Bukahari, S.K. (2019) Potential alkali silica reactivity of aggregates from different sources of Kashmir and mitigation measures thereof, Asian Journal of Civil Engineering, v.20, p.437-442. DOI: 10.1007/s42107-019-00117-1
  4. Cho, S.Y., Yim, G.J., Lee, J.Y. and Ji, S.W., (2021) A Study on Mixed-use Development Cases Using Closed Quarry Site of Overseas; the UK and Australia, Economic and Environmental Geology, v.54, n.5, p.505-513. DOI : http://dx.doi.org/10.9719/EEG.2021.54.5.505
  5. Choi, H.B., Park, J.O., Park, H.S., Kim, T.H. and Lee, K.R. (2021). Characteristics and applicability of Jeju-do basalt-based recycled aggregates, Journal of Korea Recycled Construction Resources Institute, v.16, i.2, p.50-55. DOI : https://doi.org/10.14190/MRCR.2021.16.2.050
  6. Haraguchi, K. (1930) Jeju Volcanic Island (1:250,000), Professor Ogawa's Sixtieth Birthday Memorial Volume, p.595-649 (in Japanese, title translated).
  7. Haraguchi, K. (1931) Saishu Volcano. Bulletin of the Geological Survey of Chosen (Korea), n.10, p.1-34, 10 pls (in Japanese); 1-12, 1 pl (in English).
  8. Harumoto, A. (1970) Volcanic rocks and associated rocks of Utsuryoto island. Nippon Printing and Publishing Co, p.39.
  9. Hong, S.S. and Lee, J.Y. (2021) Aggregate of Korea in 2020, Economic and Environmental Geology, v.54, n.5, p.581-594. DOI : http://dx.doi.org/10.9719/EEG.2021.54.5.505
  10. Hwang, S.G., Hwang, J.H. and Kweon, C.W. (2012) Geological report of the Ulleung-do (1:50,000), Korea Institute of Geoscience and Mineral Resources (in Korean with English abstract).
  11. Jeon, S.M. and Kim, H.K. (2021) Basic Properties and Dimension Stability of Ultra Rapid Setting Cement Mortar Containing LowQuality Recycled Aggregate, Journal of Korea Recycled Construction Resources Institute, v.9, n.3, p. 246-252. DOI : https://doi.org/10.14190/JRCR.2021.9.3.246
  12. KICT(Korea Institute of Civil engineering and building Technology) (2020) Development of Application Technology for Aggregate Based on Basalt and Recycled Resources in Jeju island.
  13. KICT(Korea Institute of Civil engineering and building Technology) (2016) Advancement Project for Construction Waste Recycling & KOLAS Management.
  14. KICT(Korea Institute of Civil engineering and building Technology) (1992) A Study on the Chemical Reaction of Crushed Aggregates.
  15. Kim, B.K. (1969) A stratigraphic and paleontologic study of the Sinyangri Formation in the vicinity of Sinyangri and Gosanri, the Jeju Island. Journal of the Geological Society of Korea, 5, 103-121.
  16. Pyo, S.H., Abate, S.Y. and Kim, H.K. (2018) Abrasion resistance of ultra high performance concrete incorporating coarser aggregate, Construction and Building Materials, v.165, p.11-16. DOI : https://doi.org/10.1016/j.conbuildmat.2018.01.036
  17. Lee, J.M., Choi, H.K., Hong, J.H. and Park, M.Y. (2021) Suggestion of Aggregate soil decision and Evaluation test method for Improving Concrete Quality and Securing Structure Stability, Journal of the Korea Concrete Institute, v.33, n.2, p.375-376.
  18. Min, K.W., Kim, J.D. and Im, G.J. (1996) Petrographic properties related to the durability of granite aggregate, Journal of KRMCIA, n.1, v.46, p.40-47.
  19. MOLIT(Ministry of Land, Infrastructure and Transport) (2022) Aggregate Resources Investigation Report : Ulleung-gun. p.1-202.
  20. MOLIT(Ministry of Land, Infrastructure and Transport) (2016) Aggregate Resources Investigation Report : Jeju-si. p.1-166.
  21. Murray, H.H. (1991) Overview-clay mineral applications, Applied Clay Science, v.5, n.5-6, p.379-395. DOI : https://doi.org/10.1016/0169-1317(91)90014-Z
  22. Na, O., Xi, Y., Ou, E., E.Saouma, V. (2014) The effects of alkalisilica reaction on the mechanical properties of concretes with three different types of reactive aggregate, Structural Concrete v.17, n.1, p.74-83. DOI: 10.1002/suco.201400062
  23. Owsiak, Z., Czapik, P. and Zapala-Slaweta, J. (2014) Assessment Gravel Aggregate Reactivity with Alkalis in Relation to Methods of Test, Archives of Civil Engineering, LX, n.4, p.441-451. DOI:10.2478/ace-2014-0030
  24. Park, G.H., Lee, B.J., Jo, D.R., Lee, S.R., Choi, H.I., Park, D.W., Lee, S.R., Choi, Y.S., Yang, D.Y., Kim, J.Y., Seo, J.Y. and Shin, H.M. (2000) 1:250,000 Explanatory Note of The Jeju(Baekado, Jinnampo) Sheet, KIGAM, KR-00(B)-01, p.1-59.
  25. Park, G.W., Lee, B.J., Jo, D.R., Kim, J.C., Lee, S.Y., Kim, Y.B., Choi, H.I., Hwang, J.H., Song, K.Y., Choi, B.Y. and Jo, B.W. (1998) Geological report of the Jeju-do (1:50,000), Korea Institute of Energy and Resources (in Korean with English abstract).
  26. Song, Y.-S., Park, M.-E. and Park, K.-H. (2006) Ages and evolutions of the volcanic rocks from Ulleung-do and Dok-do. Journal of Petrological Society of Korea, 15, 72-80 (in Korean with English abstract).
  27. Yang, D.Y. and Lee, C.B. (1997) Identification of Alkali Reactivity of Natural Aggregates by Application of a Rapid Method, Econ. Environ. Geol., v.30, n.2, p.175-183.