DOI QR코드

DOI QR Code

논산시 하천 및 육상 골재 자원의 부존 현황과 특성

Distribution, Preservation Characteristics of Land and River Natural Aggregates in Nonsan City, Korea

  • 윤현호 (한국지질자원연구원 제4기환경연구센터) ;
  • 홍세선 (한국지질자원연구원 제4기환경연구센터) ;
  • 한민 (한국지질자원연구원 제4기환경연구센터) ;
  • 이진영 (한국지질자원연구원 제4기환경연구센터)
  • Hyun Ho Yoon (Quaternary Environment Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Sei Sun Hong (Quaternary Environment Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Min Han (Quaternary Environment Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Jin-Young Lee (Quaternary Environment Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2024.02.29
  • 심사 : 2024.04.05
  • 발행 : 2024.04.29

초록

천연골재(Natural aggregate)는 인간활동에 필수적인 자원으로 건축활동과 밀접하게 관련되어 있다. 최근 골재의 수요는 매년 증가하는 추세이며 자원의 특성상 원거리에서 조달하기가 어렵다. 이 연구는 시군단위 골재자원조사의 일환으로 2023년 충청남도 논산시를 대상으로 수행된 조사결과를 바탕으로 골재부존지역의 분포와 특성을 파악하였다. 논산시는 금강 하구로부터 직선거리로 약 35km 떨어져있으며 금강 본류가 지나는 길목에 위치한다. 논산시의 지형은 동부의 산악지대와 서부의 평야지대를 형성하는 동고서저형의 지형적 특색을 지니며 금강의 지류인 논산천, 노성천, 강경천 등을 포함하여 33개의 국가 및 지방하천이 분포한다. 모든 하천들은 고지대인 북쪽과 동쪽에서 발원하여 논산천과 합류한 뒤 논산시의 서쪽 경계에서 금강 본류의 좌안으로 합류한다. 시추 결과는 고지대인 북쪽과 동쪽에서 얕은 심도를 보이며 서쪽으로 갈수록 깊은 심도를 보여 금강 본류 인근에서 최대깊이인 25m를 보인다. 계산된 육상골재의 총 부존량은 246,789,000m3이며, 개발 가능량은 172,750,000m3이다. 하천골재의 총 부존량은 5,236,000m3 이며, 개발가능량은 3,765,000m3로 나타났다. 골재의 분포양상은 지형 및 지질, 수계의 발달 양상에 따라 다양하게 나타난다. 부존량은 산간지역에서 미비하며 하천과 넓은 충적평야가 발달하는 지역에서 많은 양의 골재자원이 분포하는 것으로 나타나지만 부존심도는 4m 이상의 깊이에서 나타난다. 논산시의 골재자원 분포는 하천작용과 해수면 변동의 영향으로 인한 것이며 서해안의 큰 조차는 골재자원의 부존에 불리한 조건으로 작용한 것으로 해석된다.

Natural aggregate is an essential resource for human activities, closely related to construction. The aggregate demand has been increasing annually, and due to the nature of the resource, it is difficult to procure from distant locations. This study identifies the distribution and characteristics of aggregate-bearing areas as part of a municipal-level aggregate resource survey conducted in Nonsan City, Korea, in 2023. Nonsan City is located approximately 35 km straight distance from the Geum River estuary and lies at the passageway of the main stream of the Geum River. The topography of Nonsan City features eastern mountainous areas and western plains, creating an east-high-west-low geomorphic setting, with 33 streams distributed across the city, including tributaries of the Geum River like Nonsan Stream, Noseong Stream, and Ganggyeong Stream. All streams originate from the highlands in the north and east, converge with Nonsan Stream, and then join the west bank of the main stream of the Geum River at the western boundary of Nonsan City. Drilling core results show shallow depths in the highlands to the north and east, deepening towards the west, reaching a maximum depth of 25 m near the main stream of the Geum River. The total reserve of land aggregates is calculated to be 246,789,000 m3, with a developable amount of 172,750,000 m3. The total reserve of river aggregates is 5,236,000 m3, with a developable amount of 3,765,000 m3. The distribution of aggregates varies according to the geomorphic, geologic, and development pattern of the river system. Reserves are scarce in mountainous areas but are abundant in regions with rivers and wide alluvial plains, although reserves appear at depths greater than 4m. The distribution of aggregate resources in Nonsan City is influenced by stream activities and sea level changes, with the tidal range of the Yellow Sea acting as an unfavorable condition for the preservation of aggregate resources.

키워드

과제정보

이 연구는 한국지질자원연구원에서 수행하고 있는 국토교통부 "2024년 골재자원조사 및 관리(IP2024-008-2024)"사업의 지원으로 수행되었습니다. 논문에 대한 세심한 검토와 제안을 해주신 심사위원과 편집위원 모두에게 감사드립니다.

참고문헌

  1. Allen, J.R.L. (1970) A quantitative model of grain size and sedimentary structures in lateral deposits. Geological Journal, v.7(1), p.129-146, https://doi.org/10.1002/gj.3350070108
  2. Chang, T.S., Kim, J.C. and Yi, S. (2014) Discovery of Eemian marine deposits along the Baeksu tidal shore, southwest coast of Korea. Quaternary International, v.349, p.409-418, https://doi.org/10.1016/j.quaint.2014.06.057
  3. Hong, S.S., Kim, J.Y. and Lee, J.Y. (2015) Trends of supply and demand of aggregate in Korea(I). Petrological Society of Korea, v.24, p.253-272, https://doi.org/10.7854/JPSK.2015.24.3.253
  4. Hong, S.S. and Lee, J.Y. (2020) Analysis of 2019 domestic aggregate production in Korea(I). Economic and Environmental Geology, v.53, p.755-769, https://doi.org/10.9719/EEG.2020.53.6.755
  5. Hong, S.S. and Lee, J.Y. (2021) Aggregate of Korea in 2020. Economic and Environmental Geology, v.54(5), p.581-594, https://doi.org/10.9719/EEG.2023.56.1.87
  6. Klein, G.D. (1985) Intertidal flats and intertidal sand bodies, in Davis, R.A., Jr., ed., Coastal Sedimentary Environments: New York, Springer-Verlag, p.187-224.
  7. Kim, J.C., Kim, J.Y. and Lee, J.Y. (2021). Distribution Characteristics of Quaternary Geology and Aggregate Resources in Geumsan-gun, Chungcheongnam-do. Economic and Environmental Geology, v.54(5), p. 595-603, https://doi.org/10.9719/EEG.2021.54.5.595
  8. Kim, Y.H., Lee, H.J., Chun, S.S., Han, S.J. and Chough, S.K. (1999) Holocene transgressive stratigraphy of a macrotidal flat in the southeastern Yellow Sea; Gomso Bay, Korea. Journal of Sedimentary Research, v.69(2), p.328-337, https://doi.org/10.2110/jsr.69.328
  9. KIGAM (Korea Institute of Geoscience and Mineral Resources) (1980) Geological Explosion Manual of Nonsan area.
  10. KIGAM (Korea Institute of Geoscience and Mineral Resources) (2023a) Aggregate Resources Investigation Report for Nonsan-si and Gyeryong-si. Ministry of Land, Infrastructure and Transport, 473p.
  11. KIGAM (Korea Institute of Geoscience and Mineral Resources) (2023b) Aggregate Resources Investigation Report in Yeongdeokgun. Ministry of Land, Infrastructure and Transport, 443p.
  12. KIGAM (Korea Institute of Geoscience and Mineral Resources) (2023c) Aggregate Resources Investigation Report in Gunwigun. Ministry of Land, Infrastructure and Transport, 335p.
  13. KIGAM (Korea Institute of Geoscience and Mineral Resources) (2023d) Aggregate Resources Investigation Report for Buan. Ministry of Land, Infrastructure and Transport, 359p.
  14. KWRC (Korea Water Resources Corporation) (2011) Aggregate Resources Investigation Report for Gimpo and Paju. Ministry of Land, Transport and Maritime Affairs, 304p.
  15. MOLIT (Ministry of Land, Infrastructure and Transport) (2016) Fundamental Planning report for river improvement works (Nonsan stream, Noseong stream, Ganggyeong stream). Ministry of Land, Infrastructure and Transport, 1036p.
  16. Lee, H., Byun, U.H., Ko, K., Youm, S.J., Ji, S., Jo, H., Shin, S. and Lee, J.Y. (2021). Characteristics of the Land and River Aggregates Distribution in Goyang City, Korea. Economic and Environmental Geology, v.54(5), p.535-547, https://doi.org/10.9719/EEG.2021.54.5.535
  17. Orton, G.J. and Reading, H.G. (1993) Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size. Sedimentology, v.40(3), p.475-512, https://doi.org/10.1111/j.1365-3091.1993.tb01347.x
  18. Shanley, K.W. and McCabe, P.J. (1992) Alluvial architecture in a sequence stratigraphic framework: a case history from the Upper Cretaceous of southern Utah, USA. The geological modelling of hydrocarbon reservoirs and outcrop analogues, p.21-55. https://doi.org/10.1002/9781444303957.ch2
  19. Torres, A., Simoni, M.U., Keiding, J.K., Muller, D.B., zu Ermgassen, S.O.S.E., Liu, J., Jaeger, J.A.G., Winter, M. and Lambin, E.F. (2021) Sustainability of the global sand system in the Anthropocene. One Earth, v.4, p.639-650, https://doi.org/10.1016/j.oneear.2021.04.011
  20. Yang, B., Dalrymple, R.W., Chun, S. and Lee, H. (2006) Transgressive sedimentation and stratigraphic evolution of a wave-dominated macrotidal coast, western Korea. Marine Geology, v.235(1-4), p.35-48. https://doi.org/10.1016/j.margeo.2006.10.003
  21. Yoon, H.H., Ryang, W.H., Chun, S.S., Simms, A.R., Kim, J.C., Chang, T.S., Yoo, D.G. and Hong, S.H. (2023) Costal switching of dominant depositional processes driven by decreasing rates of Holocene sea-level rise along the macrotidal coast of Gochang, SW Korea. Journal of Sedimentary Research, v.93, p.20-36, https://doi.org/10.2110/jsr.2021.023