• Title/Summary/Keyword: 논산천

Search Result 29, Processing Time 0.024 seconds

Naturalness Assessment of Riverine Wetland by Vegetational Prevalence Index (식생우세도 지수에 의한 하천습지의 자연도 평가)

  • Chun, Seung-Hoon;Ko, Shin-Hye;Ahn, Hong-Kyu;Chae, Soo-Kwon
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.535-545
    • /
    • 2011
  • This study was carried out to suggest the baseline data necessary for vegetation restoration by naturalness assessment of riverine wetland within stream corridor. We selected stream reach both of near nature and urbanized by Nonsan stream and Hongchun river as experimental site. Composition of vegetation community and land use pattern between two sites indicated considerable difference, which imply for many different watershed property and process disturbed each other at river ecosystem. Naturalness of the sampled reaches showed that near nature is in better condition for riverine wetland than urbanized of all two sites. However, the prevalence index of Hongchun river within its natural state was lower than that of Nonsan stream, because the index included some vegetation communities occurred at upland fringe and bank slope. In conclusion assessment system using prevalence index would be considered an effective method for evaluating of natural states of riverine wetland.

The Distribution Characteristics of Fish Community by Habitat Type in the Nonsan Stream (논산천의 서식처 유형별 어류군집의 분포특성)

  • Lee, Hwang-Goo;Choi, Jun-Kil
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.303-313
    • /
    • 2014
  • The spatial distribution characteristic of fish community were investigated at the 10 habitat types in the Nonsan stream from August, 2008 to June, 2009. The collected species during the surveyed period were 26 species belong to 6 families. Korean endemic species were Sarcocheilichthys nigripinnis morii, Squalidus japonicus coreanus, Hemiculter eigenmanni, Pseudobagrus koreanus, and Odontobutis interrupta which showed 19.2% ratio of total species. Dominant species was Zacco platypus, and subdominant species was Tridentiger brevispinis. Dominant species according to habitat types were Micropterus salmoides(substrate type pool and rock type pool), Lepomis macrochirus(channel connected pool and channel unconnected pool/abandoned type pool), T. brevispinis(channel unconnected pool/overflow type and run) and Z. platypus(riffle, meander type pool, side channel, and dam type pool). As a results of community analysis in side channel, diversity index showed relatively high values, indicating that habitat types in the Nonsan stream have relatively stable community structure. Bray-curtis cluster analysis indicated that the meander type pool and riffle showed the most similar values(80.8%). Moreover, cluster and principal component analysis were classified as 2 groups(lotic and lentic habitats).

Analysis of Distribution Characteristics of Flowrate and Water Quality in Tributary at Chungcheongnam-do (충청남도 지류하천의 유량 및 수질 분포특성 분석)

  • Park, Sang-Hyun;Moon, Eun-Ho;Choi, Jeong-Ho;Cho, Byung-Wook;Kim, Hong-Su;Jeong, Woo-Hyeok;Yi, Sang-Jin;Kim, Young-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.739-747
    • /
    • 2011
  • The major 81 tributaries in Chungcheongnam-do were monitored for flowrate and water quality in order to understand the characteristics of the watershed and to select the tributary catchment for improving water quality. The value of flowrate in the tributaries at Nonsancheon catchment at the Geum-River watershed and Gokgyocheon, Muhancheon, Sapgyocheon at the Sapgyo-Reservoir watershed, which is located in the southern and northern area in Chungcheongnam-do, was relatively greater than the other watersheds. The concentration of water pollutants regardless of water quality parameters in Nonsancheon catchment at the Geum-River watershed, Gokgyocheon catchment at the Sapgyo-Reservoir watershed and the Anseongcheon watershed, which have a dense source of pollution, were higher than the other watersheds. However, 64 percent of the tributaries at the Geum-River watershed, 45 percent of tributaries at the Sapgyo-Reservoir watershed, 26 percent of tributaries at the Geum-River watershed all satisfied the Class II regulations in the Framework Act on Environment Policy, but all of the tributaries located in the Anseongcheon watershed exceeded the Class II regulations. Therefore, the policy for improving the water quality of the tributary in Chungcheongnam-do should be established in the following order: Anseongcheon, Seohae, Sapgyo-Reservoir watersheds. Consequently, the tributary catchment for improving water quality, which has a large flowrate and a high concentration of water pollutants, was selected at Ganggyeongcheon, Geumcheon, Nonsancheon, Seokseongcheon, Seungcheoncheon, Jeongancheon, Jeungsancheon (so far Geum-River watershed), Gokgyocheon, Namwoncheon, Maegokcheon, Muhancheon, Sapgyocheon Oncheoncheon, Cheonancheon (so far Sapgyo-Reservoir watershed), Gwangcheoncheon, Dangjincheon, Daecheoncheon, Dodangcheon, Waryongcheon, Cheongjicheon, Pangyocheon, Heungincheon (so far Seohae watershed), Dunpocheon, Seonghwancheon, Ipjangcheon (so far Anseongcheon watershed). The plans as installation of environmental facilities to reduce the source of pollution for improving the water quality of these tributary catchments should be urgently established and implemented.

Distribution, Preservation Characteristics of Land and River Natural Aggregates in Nonsan City, Korea (논산시 하천 및 육상 골재 자원의 부존 현황과 특성)

  • Hyun Ho Yoon;Sei Sun Hong;Min Han;Jin-Young Lee
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.143-159
    • /
    • 2024
  • Natural aggregate is an essential resource for human activities, closely related to construction. The aggregate demand has been increasing annually, and due to the nature of the resource, it is difficult to procure from distant locations. This study identifies the distribution and characteristics of aggregate-bearing areas as part of a municipal-level aggregate resource survey conducted in Nonsan City, Korea, in 2023. Nonsan City is located approximately 35 km straight distance from the Geum River estuary and lies at the passageway of the main stream of the Geum River. The topography of Nonsan City features eastern mountainous areas and western plains, creating an east-high-west-low geomorphic setting, with 33 streams distributed across the city, including tributaries of the Geum River like Nonsan Stream, Noseong Stream, and Ganggyeong Stream. All streams originate from the highlands in the north and east, converge with Nonsan Stream, and then join the west bank of the main stream of the Geum River at the western boundary of Nonsan City. Drilling core results show shallow depths in the highlands to the north and east, deepening towards the west, reaching a maximum depth of 25 m near the main stream of the Geum River. The total reserve of land aggregates is calculated to be 246,789,000 m3, with a developable amount of 172,750,000 m3. The total reserve of river aggregates is 5,236,000 m3, with a developable amount of 3,765,000 m3. The distribution of aggregates varies according to the geomorphic, geologic, and development pattern of the river system. Reserves are scarce in mountainous areas but are abundant in regions with rivers and wide alluvial plains, although reserves appear at depths greater than 4m. The distribution of aggregate resources in Nonsan City is influenced by stream activities and sea level changes, with the tidal range of the Yellow Sea acting as an unfavorable condition for the preservation of aggregate resources.

Estimation of Future Long-Term Riverbed Fluctuations and Aggregate Extraction Volume Using Climate Change Scenarios: A Case Study of the Nonsan River Basin (기후변화시나리오를 이용한 미래 장기하상변동 및 골재 채취량 산정: 논산천을 사례로)

  • Dae Eop Lee;Min Seok Kim;Hyun Ju Oh
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.107-117
    • /
    • 2024
  • The objective of this study is to estimate riverbed fluctuations and the volume of aggregate extraction attributable to climate change. Rainfall-runoff modeling, utilizing the SWAT model based on climate change scenarios, as well as long-term riverbed fluctuation modeling, employing the HEC-RAS model, were conducted for the Nonsan River basin. The analysis of rainfall-runoff and sediment transport under the SSP5-8.5 scenario for the early part of the future indicates that differences in annual precipitation may exceed 600 mm, resulting in a corresponding variation in the basin's sediment discharge by more than 30,000 tons per year. Additionally, long-term riverbed fluctuation modeling of the lower reaches of the Nonsan Stream has identified a potential aggregate extraction area. It is estimated that aggregate extraction could be feasible within a 2.455 km stretch upstream, approximately 4.6 to 6.9 km from the confluence with the Geum River. These findings suggest that the risk of climate crises, such as extreme rainfall or droughts, could increase due to abnormal weather conditions, and the increase in variability could affect long-term aggregate extraction. Therefore, it is considered important to take into account the impact of climate change in future long-term aggregate extraction planning and policy formulation.

Increasing Instream flow in Nonsancheon by Water Storage Securing Scenario of Upstream Reservoirs (상류 저수지군의 저수량 확보 시나리오에 의한 논산천의 유지유량 증가)

  • Noh, Jae-Kyoung
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.1
    • /
    • pp.99-109
    • /
    • 2009
  • This study was performed to evaluate the effect of increasing instream flow at Nonsancheon stream of Nonsan city by securing water storages in upstream reservoirs; Ge-ryong, Gyoung-cheon, Dae-dun, and Tab-jeong. The paralleled and cascaded upstream reservoir operations for 8 storage securing scenarios were considered to simulate daily streamflows at Nonsan station. Using Tab-jeong reservoir water storage, the DAWAST model's parameters were determined, and the verified result showed Nash-Schcliffe's coefficient of 0.666. Instream flows were analyzed to supply maximum $59.85Mm^3$ on an annually average from upstream reservoir storage securing scenarios. The storage securing set of 2 m heightened Ge-ryong, 5 m Dae-dun, and 1 m Tab-jeong showed that the additional secured water storages were $17.132Mm^3$ and instream flow at Nonsan station was increased to $2.183m^3/s$, 2 times of present condition.

  • PDF