DOI QR코드

DOI QR Code

Effect of biofibers addition on the structure and properties of soy protein composite films

  • Ye Eun Kim (Department of Biofibers and Biomaterials Science, Kyungpook National University) ;
  • Su Jin Kim (Bio-Convergence Research Center, Korea Textile Machinery Convergence Research Institute) ;
  • Yong-Il Chung (Bio-Convergence Research Center, Korea Textile Machinery Convergence Research Institute) ;
  • Chae Hwa, Kim (Advanced Textile R&D Department, Korea Institute of Industrial Technology) ;
  • Tae Hee Kim (Advanced Textile R&D Department, Korea Institute of Industrial Technology) ;
  • In Chul Um (Department of Biofibers and Biomaterials Science, Kyungpook National University)
  • 투고 : 2023.12.27
  • 심사 : 2024.01.03
  • 발행 : 2024.03.31

초록

Soy protein isolate (SPI) has garnered researchers' attention due to its abundance, costeffectiveness, excellent biocompatibility, hemo-compatibility, and biodegradability. However, SPI faces limitations in application due to poor processability and weak mechanical strength. Substantial efforts have been made to address these challenges. In this preliminary study, glycerol and biofibers were added to SPI to improve the mechanical properties and film forming, and glyoxal was employed to crosslink SPI molecules. The microstructure and mechanical properties of the resulting SPI/composite films were evaluated. A 15% addition of glycerol proved sufficient for good film formation. Among the biofibers, short SF microfibers were the most effective in enhancing breaking strength, while TEMPO-oxidized CNF (cellulose nanofiber) excelled among CNFs. Crosslinking with glyoxal significantly enhanced the mechanical properties, with the type of biofiber minimally affecting the mechanical properties of the crosslinked SPI composite films.

키워드

과제정보

This study was supported by the National Research Foundation of Korea Grant funded by the Korean government (Ministry of Science and ICT) (No. 2021R1A2C1006921).

참고문헌

  1. Bae CH, Um IC (2022) Fabrication of silk nanofibril-embedded regenerated silk fibroin composite fiber by wet spinning. Int J Indust Entomol 45, 70-77. http://dx.doi.org/10.7852/ijie.2022.45.2.70
  2. Bai M, Zhang Y, Bian Y, Gao Q, Shi SQ, Cao J, et al. (2023) A novel universal strategy for fabricating soybean protein adhesive with excellent adhesion and anti-mildew performances. Chem Eng J 452, 139359. https://doi.org/10.1016/j.cej.2022.139359
  3. Choi HN, Lee TS, Yang JW, Lee SG (2011) Characteristics of Soybean Protein Resin Modified by Plasticizers and Cross-Linking Agents. J Adhes Interface 12, 73-80. https://doi.org/10.17702/jai.2011.12.2.073
  4. Choi YY, Kim SW, Kim KY, Um IC (2023) Dissolution, crystallilnity, and mechanical properties of silk sericin from Sericinjam silkworm cocoons. Int J Indust Entomol 46, 9-15. http://dx.doi.org/10.7852/ijie.2023.46.1.9
  5. Denavi G, Tapia-Blacido DR, Anon MC, Sobral PJDA, Mauri AN, Menegalli FC (2009) Effects of drying conditions on some physical properties of soy protein films. J Food Eng 90, 341-349. https://doi.org/10.1016/j.jfoodeng.2008.07.001
  6. Gonzalez A, Gastelu G, Barrera GN, Ribotta PD, Igarzabal CIA (2019) Preparation and characterization of soy protein films reinforced with cellulose nanofibers obtained from soybean byproducts. Food Hydrocolloids 89, 758-764. https://doi.org/10.1016/j.foodhyd.2018.11.051
  7. Huang CF, Tu CW, Lee RH, Yang CH, Hung WC, Lin KYA (2019) Study of various diameter and functionality of TEMPO- oxidized cellulose nanofibers on paraquat adsorptions. Polym Degrad Stabil 161, 206-212. https://doi.org/10.1016/j.polymdegradstab.2019.01.023
  8. Jensen A, Lim LT, Barbut S, Marcone M (2015) Development and characterization of soy protein films incorporated with cellulose fibers using a hot surface casting technique. LWT-Food Sci Technol 60, 162-170. https://doi.org/10.1016/j.lwt.2014.09.027
  9. Kim HJ, Roy S, Rhim JW (2021) Effects of various types of cellulose nanofibers on the physical properties of the CNF-based films. J Environ Chem Eng 9, 106043. https://doi.org/10.1016/j.jece.2021.106043
  10. Kim HJ, Um IC (2014) Effect of degumming ratio on wet spinning and post drawing performance of regenerated silk. Int J Biol Macromol 67, 387-393. https://doi.org/10.1016/j.ijbiomac.2014.03.055
  11. Kim YE, Bae YJ, Seok YS, Um IC (2022) Effect of hot press time on the structure characteristics and mechanical properties of silk non-woven fabric. Int J Indust Entomol 44, 12-20. http://dx.doi.org/10.7852/ijie.2022.44.1.12
  12. Kim YE, Kim CW, Um IC (2023) Comparison of sericin produced through laboratory-and plant-scale extraction. Int J Indust Entomol 47, 63-71. http://dx.doi.org/10.7852/ijie.2023.47.1.63
  13. Lee HG, Nho SK, Um IC (2021) Morphology and crystallinity of silkworm cocoons with different rearing seasons. Int J Indust Entomol 43, 16-21. http://dx.doi.org/10.7852/ijie.2021.43.1.16
  14. Lee HG, Bae DG, Um IC (2022) Effect of wet treatment on the structure of various silkworm strain cocoons with different rearing seasons. Int J Indust Entomol 44, 4-11. http://dx.doi.org/10.7852/ijie.2022.44.1.4
  15. Maquirriain MA, Neyertz CA, Querini CA, Pisarello ML (2022) Crude glycerine purification by solvent extraction. Braz J Chem Eng 39, 235-249. https://doi.org/10.1007/s43153-021-00164-9
  16. Martelli-Tosi M, Masson MM, Silva NC, Esposto BS, Barros TT, Assis OB, et al. (2018) Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films. Carbohydr Polym 198, 61-68. https://doi.org/10.1016/j.carbpol.2018.06.053
  17. Peles Z, Zilberman M (2012) Novel soy protein wound dressings with controlled antibiotic release: mechanical and physical properties. Acta Biomater 8, 209-217. https://doi.org/10.1016/j.actbio.2011.08.022
  18. Poyraz B, Tozluoglu A, Candan Z, Demir A, Yavuz M (2017) Influence of PVA and silica on chemical, thermo-mechanical and electrical properties of Celluclast-treated nanofibrillated cellulose composites. Int J Biol Macromol 104, 384-392. https://doi.org/10.1016/j.ijbiomac.2017.06.018
  19. Preece K, Hooshyar N, Zuidam N (2017) Whole soybean protein extraction processes: A review. Innov Food Sci Emerg Technol 43, 163-172. https://doi.org/10.1016/j.ifset.2017.07.024
  20. Qin Z, Mo L, Liao M, He H, Sun J (2019) Preparation and characterization of soy protein isolate-based nanocomposite films with cellulose nanofibers and nano-silica via silane grafting. Polymers 11, 1835. https://doi.org/10.3390/polym11111835
  21. Rani S, Kumar R (2019) A review on material and antimicrobial properties of soy protein isolate film. J Polym Environ 27, 1613-1628. https://doi.org/10.1007/s10924-019-01456-5
  22. Um IC, Kweon HY, Park YH, Hudson S (2001) Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. Int J Biol Macromol 29, 91-97. https://doi.org/10.1016/S0141-8130(01)00159-3
  23. Wang K, Li X, Peng H, Dong Y, Li Y, Liu X, et al. (2022) Tough and strong soy protein film by integrating CNFs and MXene with photothermal conversion and UV-blocking performance. Cellulose 29, 9235-9249. https://doi.org/10.1007/s10570-022-04828-8
  24. Wang Z, Ke M, He L, Dong Q, Liang X, Rao J, et al. (2021) Biocompatible and antibacterial soy protein isolate/quaternized chitosan composite sponges for acute upper gastrointestinal hemostasis. Regen Biomater 8, 1-12. https://doi.org/10.1093/rb/rbab034
  25. Wang Z, Zhu W, Huang R, Zhang Y, Jia C, Zhao H, et al. (2020). Fabrication and characterization of cellulose nanofiber aerogels prepared via two different drying techniques. Polymers 12, 2583. https://doi.org/10.3390/polym12112583
  26. Wu Z, Liang, J, Hong L, Zhang B, Xi X, Li L (2021) Study on the soy protein-based adhesive cross-linked by glyoxal. J Renew Mater 9, 205. https://doi.org/10.32604/jrm.2021.013655
  27. Zhao Y, He M, Jin H, Zhao L, Du Q, Deng H, et al. (2018) Construction of highly biocompatible hydroxyethyl cellulose/soy protein isolate composite sponges for tissue engineering. Chem Eng J 341, 402-413. https://doi.org/10.1016/j.cej.2018.02.046