DOI QR코드

DOI QR Code

Fluorescent Properties of Daehwangjam, Golden Silk, and Juhwangjam and Their Diminishing upon HCl Vapor Exposure

  • Rakesh K. Jha (Department of Electronic Engineering, Hanyang University) ;
  • Seong-Wan Kim (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Sunghwan Kim (Department of Electronic Engineering, Hanyang University)
  • Received : 2023.12.10
  • Accepted : 2024.01.03
  • Published : 2024.03.31

Abstract

For over five millennia, humans have benefited from the valuable byproducts of Bombyx mori silkworms nourished on mulberry leaves and a multitude of potential applications remains available due to the diverse array of silkworm varieties. In this work, we discuss the utilization of Daehwangjam (DHJ), golden silk (GS), and Juhwangjam (JHJ), distinctive colored silks found in Korea, as chemosensors. These novel silks emit fluorescence under external stimuli and show a diminishing fluorescence intensity when exposed to HCl vapor. The considerable surface-to-volume ratio of these cocoons allows for the identification of 5 ppm, 300 ppm, and 3000 ppm HCl vapors through decreased fluorescence intensity. The results show the suitability of natural DHJ, GS, and JHJ for applications in biosensing applications.

Keywords

Acknowledgement

The authors acknowledge the support of the Rural Development Administration (PJ016130, Research Program for Agricultural Science and Technology Development of the National Academy of Agricultural Science) and the National Research Foundation (NRF) of Korea (nos. RS-2023-00237928 and RS-2023-00245977).

References

  1. Baron MG, Narayanaswamy R, Thorpe SC (1996) Hydrophobic Membrane Sensors for the Optical Determination of Hydrogen Chloride Gas. Sens Actuators B Chem 34, 511-515. doi: 10.1016/S0925-4005(96)01942-9.
  2. Barrow CS, Alarie Y, Warrick JC, Stock MAF (1977) Comparison of the Sensory Irritation Response in Mice to Chlorine and Hydrogen Chloride. Arch Environ Health 32, 68. doi: 10.1080/00039896.1977.10667258.
  3. Chen G, Li Y, Bick M, Chen J (2020) Smart Textiles for Electricity Generation. Chem Rev 120, 3668-3720. doi: 10.1021/acs.chemrev.9b00821.
  4. Cherry RH (1987) History of Sericulture. Bull Entomol Soc Am 33, 83-85. doi: 10.1093/besa/33.2.83.
  5. Gogurla N, Wahab A, Kim S (2023) A Biomaterial-Silicon Junction for Photodetection. Mater Today Bio 20, 100642. doi: 10.1016/j.mtbio.2023.100642.
  6. Gogurla N, Roy B, Park JY, Kim S (2019) Skin-Contact Actuated Single-Electrode Protein Triboelectric Nanogenerator and Strain Sensor for Biomechanical Energy Harvesting and Motion Sensing. Nano Energy 62, 674-681. doi: 10.1016/j.nanoen.2019.05.082.
  7. Goldsmith MR, Shimada T, Abe H (2004) The Genetics and Genomics of the Silkworm, Bombyx Mori. Annu Rev Entomol 50, 71-100. doi: 10.1146/annurev.ento.50.071803.130456.
  8. Guan X, Gong J, Xu B (2020) Three-Dimensional Conformal Porous Microstructural Engineering of Textile Substrates with Customized Functions of Brick Materials and Inherent Advantages of Textiles. ACS Appl Mater Interfaces 12, 17967-17978. doi: 10.1021/acsami.0c01557.
  9. Han F, Wang T, Liu G, Liu H, Xie X, Wei Z (2022) Materials with Tunable Optical Properties for Wearable Epidermal Sensing in Health Monitoring. Adv Mater 34, 2109055. doi: 10.1002/adma.202109055.
  10. Hirayama C, Ono H, Tamura Y, Konno K, Nakamura M (2008) Regioselective Formation of Quercetin 5-O-Glucoside from Orally Administered Quercetin in the Silkworm, Bombyx Mori. Phytochemistry 69, 1141-1149. doi: 10.1016/j.phytochem.2007.11.009.
  11. Hong Y, Wang B, Long Z, Zhang Z, Pan Q, Liu S (2021) Hierarchically Interconnected Piezoceramic Tex-tile with a Balanced Performance in Piezoelectricity, Flexibility, Toughness, and Air Permeability. Adv Funct Mater 31, 2104737. doi: 10.1002/adfm.202104737.
  12. Jeong CY, Kang SK, Kim SW, Kim HB, Park JW, Lee JH et al. (2023). An Efficient Production Management of the Silkworm Variety "Daewhangjam" Through Low Temperature in a Pupa. Int J Indust Entomol 47, 44-50. doi: 10.7852/ijie.2023.47.1.44.
  13. Jia LW, Zhang X (2023) Versatile Red-Emissive Carbon Dots for Smart Textiles and Fluorescence Sensing. ACS Appl Nano Mater 6, 1379-1385. doi: 10.1021/acsanm.2c05012.
  14. Ji SD, Nguyen P, Yoon SM, Kim KY, Son JG, Kweon HY et al. (2017) Comparison of Nutrient Compositions and Pharmacological Effects of Steamed and Freeze-Dried Mature Silkworm Powders Generated by Four Silkworm Varieties. J Asia Pac Entomol 20, 1410-1418. doi: 10.1016/j.aspen.2017.10.010.
  15. Kim SW, Park JW, Kim SB, Yu JH, Hong JW, Kang SK et al. (2020). A New Breed of Silkworm Variety, Juhwangjam, for Light Pink Cocoon. Int J Indust Entomol 40, 51-55. doi: 10.7852/ijie.2020.40.2.51.
  16. Kleinegris DM, van Es MA, Janssen M, Brandenburg WA, Wijffels RH (2010) Carotenoid Fluorescence in Dunaliella Salina. J Appl Phycol 22, 645-649. doi: 10.1007/s10811-010-9505-y.
  17. Kweon HY, Lee KG, Park KY, Kang SW, Seok YS (2012a) Degumming Characteristics and Color Stability of Golden Silk Cocoon. Int J Indust Entomol 24, 1-5. doi: 10.7852/ijie.2012.24.1.001.
  18. Kweon HY, Lee KG, Park KY, Kang SW, Kang PD, Kim MJ et al. (2012b) Cocoon Filament Quality of a Special Silkworm Variety, Golden Silk. Int J Indust Entomol 24, 17-21. doi: 10.7852/ijie.2012.24.1.017.
  19. Lee J, Kang M, Park K, Nho S (2017) Characteristics of Genes in Carotenoid Cocoon Color. Bombyx Mori L. Int J Indust Entomol 35, 71-76. doi: 10.7852/ijie.2017.35.2.71.
  20. Lestari F, Hayes AJ, Green AR, Markovic B (2005) In Vitro Cytotoxicity of Selected Chemicals Commonly Produced During Fire Combustion Using Human Cell Lines. Toxicol Vitro 19, 653-663. doi: 10.1016/j.tiv.2005.03.002.
  21. Libanori A, Chen G, Zhao X, Zhou Y, Chen J (2022) Smart Textiles for Personalized Healthcare. Nat Electron 5, 142-156. doi: 10.1038/s41928-022-00723-z.
  22. Lin Q, Zhu Y, Wang Y, Li D, Zhao Y, Liu Y (2023) Flexible Quantum Dot Light-Emitting Device for Emerging Multifunctional and Smart Applications. Adv Mater 2210385. doi: 10.1002/adma.202210385.
  23. Ma M, Hussain M, Dong S, Zhou W (2016) Characterization of the Pigment in Naturally Yellow-Colored Domestic Silk. Dyes Pigm 124, 6-11. doi: 10.1016/j.dyepig.2015.08.003.
  24. Min K, Kim S, Kim S (2017) Deformable and Conformal Silk Hydrogel Inverse Opal. Proc Natl Acad Sci USA 114, 6185-6190. doi: 10.1073/pnas.1701092114.
  25. Sakudoh T, Sezutsu H, Nakashima T, Kobayashi I, Fujimoto H, Uchino K (2007) Carotenoid Silk Coloration is Controlled by a Carotenoid-Binding Protein, A Product of the Yellow Blood Gene. Proc Natl Acad Sci USA 104, 8941-8946. doi: 10.1073/pnas.0702860104.
  26. Shin J, Wang H, Kwon K, Ostojich D, Christiansen Z, Berkovich J (2023) Wireless, Soft Sensors of Skin Hydration with Designs Optimized for Rapid, Accurate Diagnostics of Dermatological Health. Adv Healthc Mater 12, 2202021. doi: 10.1002/adhm.202202021.
  27. Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M (2010) Emerging Applications of Stimuli-Responsive Polymer Materials. Nat Mater 9, 101-113. doi: 10.1038/nmat2614.
  28. Tang S, Zhao C, Chen G, Sun G (2019) A Study on Computerized Selection of Fluorescent Dyes for Environmentally Friendly Textile Applications. Dyes Pigm 165, 256-263. doi: 10.1016/j.dyepig.2019.02.021.
  29. Tat T, Chen G, Zhao X, Zhou Y, Xu J, Chen J (2022) Smart Textiles for Healthcare and Sustainability. ACS Nano 16, 13301-13313. doi: 10.1021/acsnano.2c06287.
  30. Vivekananthan V, Alluri NR, Purusothaman Y, Chandrasekhar A, Selvarajan S, Kim SJ (2018) Biocompatible Collagen Nanofibrils: An Approach for Sustainable Energy Harvesting and Battery-Free Humidity Sensor Applications. ACS Appl Mater Interfaces 10, 18650-18656. doi: 10.1021/acsami.8b02915.
  31. Zhang Y, Xia X, Ma K, Xia G, Wu M, Cheung YH (2023) Functional Textiles with Smart Properties: Their Fabrications and Sustainable Applications. Adv Funct Mater 2301607. doi: 10.1002/adfm.202301607.