DOI QR코드

DOI QR Code

USING ROTATIONALLY SYMMETRIC PLANES TO ESTABLISH TOPOLOGICAL FINITENESS OF MANIFOLDS

  • Eric Choi (Department of Mathematics and Statistics Georgia Gwinnett College)
  • Received : 2023.04.04
  • Accepted : 2023.10.19
  • Published : 2024.03.31

Abstract

Let (M, p) denote a noncompact manifold M together with arbitrary basepoint p. In [7], Kondo-Tanaka show that (M, p) can be compared with a rotationally symmetric plane Mm in such a way that if Mm satisfies certain conditions, then M is proved to be topologically finite. We substitute Kondo-Tanaka's condition of finite total curvature of Mm with a weaker condition and show that the same conclusion can be drawn. We also use our results to show that when Mm satisfies certain conditions, then M is homeomorphic to ℝn.

Keywords

References

  1. I. Belegradek, E. Choi, and N. Innami, Rays and souls in von Mangoldt planes, Pacific J. Math. 259 (2012), no. 2, 279-306. https://doi.org/10.2140/pjm.2012.259.279
  2. R. E. Greene, A genealogy of noncompact manifolds of nonnegative curvature: history and logic, in Comparison geometry (Berkeley, CA, 1993-94), 99-134, Math. Sci. Res. Inst. Publ., 30, Cambridge Univ. Press, Cambridge, 1997.
  3. K. Grove, Critical point theory for distance functions, in Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), 357-385, Proc. Sympos. Pure Math., 54, Part 3, Amer. Math. Soc., Providence, RI, 1993. https://doi.org/10.1090/pspum/054.3/1216630
  4. K. Grove and K. Shiohama, A generalized sphere theorem, Ann. of Math. (2) 106 (1977), no. 2, 201-211. https://doi.org/10.2307/1971164
  5. Y. Itokawa, Y. Machigashira, and K. Shiohama, Generalized Toponogov's theorem for manifolds with radial curvature bounded below, in Explorations in complex and Riemannian geometry, 121-130, Contemp. Math., 332, Amer. Math. Soc., Providence, RI, 2003. https://doi.org/10.1090/conm/332/05932
  6. K. Kondo and S. Ohta, Topology of complete manifolds with radial curvature bounded from below, Geom. Funct. Anal. 17 (2007), no. 4, 1237-1247. https://doi.org/10.1007/s00039-007-0625-8
  7. K. Kondo and M. Tanaka, Total curvatures of model surfaces control topology of complete open manifolds with radial curvature bounded below. II, Trans. Amer. Math. Soc. 362 (2010), no. 12, 6293-6324. https://doi.org/10.1090/S0002-9947-2010-05031-7
  8. K. Kondo and M. Tanaka, Total curvatures of model surfaces control topology of complete open manifolds with radial curvature bounded below: I, Math. Ann. 351 (2011), no. 2, 251-266. https://doi.org/10.1007/s00208-010-0593-4
  9. Y. Machigashira, Generalized Toponogov comparison theorem for manifolds of roughly non-negative radial curvature, Information 13 (2010), no. 3B, 835-841.
  10. Y. Mashiko and K. Shiohama, Comparison geometry referred to warped product models, Tohoku Math. J. (2) 58 (2006), no. 4, 461-473. http://projecteuclid.org/euclid.tmj/1170347684
  11. P. Petersen, Riemannian geometry, second edition, Graduate Texts in Mathematics, 171, Springer, New York, 2006.
  12. K. Shiohama and M. Tanaka, Compactification and maximal diameter theorem for noncompact manifolds with radial curvature bounded below, Math. Z. 241 (2002), no. 2, 341-351. https://doi.org/10.1007/s002090200418