DOI QR코드

DOI QR Code

WAVELET CHARACTERIZATIONS OF VARIABLE HARDY-LORENTZ SPACES

  • Yao He (School of Mathematics and Statistics Central South University)
  • Received : 2023.03.30
  • Accepted : 2023.10.19
  • Published : 2024.03.31

Abstract

In this paper, let q ∈ (0, 1]. We establish the boundedness of intrinsic g-functions from the Hardy-Lorentz spaces with variable exponent Hp(·),q(ℝn) into Lorentz spaces with variable exponent Lp(·),q(ℝn). Then, for any q ∈ (0, 1], via some estimates on a discrete Littlewood-Paley g-function and a Peetre-type maximal function, we obtain several equivalent characterizations of Hp(·),q(ℝn) in terms of wavelets.

Keywords

References

  1. A. Calderon, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190. https://doi.org/10.4064/sm-24-2-113-190 
  2. D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis, Birkhauser/Springer, Heidelberg, 2013. https://doi.org/10.1007/978-3-0348-0548-3 
  3. L. Diening, Maximal function on generalized Lebesgue spaces Lp(·), Math. Inequal. Appl. 7 (2004), no. 2, 245-253. https://doi.org/10.7153/mia-07-27 
  4. C. Fefferman, N. M. Riviere, and Y. Sagher, Interpolation between Hp spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 75-81. https://doi.org/10.2307/1996982 
  5. R. Fefferman and F. Soria, The space Weak H1, Studia Math. 85 (1986), no. 1, 1-16 (1987). https://doi.org/10.4064/sm-85-1-1-16 
  6. G. B. Folland and E. M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, 28, Princeton Univ. Press, Princeton, NJ, 1982. 
  7. X. Fu, Equivalent characterizations of Hardy spaces with variable exponent via wavelets, Front. Math. China 14 (2019), no. 4, 737-759. https://doi.org/10.1007/s11464-019-0777-5 
  8. X. Fu and D. C. Yang, Wavelet characterizations of Musielak-Orlicz Hardy spaces, Banach J. Math. Anal. 12 (2018), no. 4, 1017-1046. https://doi.org/10.1215/17358787-2018-0010 
  9. X. Fu and D. C. Yang, Wavelet characterizations of the atomic Hardy space H1 on spaces of homogeneous type, Appl. Comput. Harmon. Anal. 44 (2018), no. 1, 1-37. https://doi.org/10.1016/j.acha.2016.04.001 
  10. J. Garcia-Cuerva and J. M. Martell, Wavelet characterization of weighted spaces, J. Geom. Anal. 11 (2001), no. 2, 241-264. https://doi.org/10.1007/BF02921965 
  11. E. Hernandez and G. L. Weiss, A First Course on Wavelets, Studies in Advanced Mathematics, CRC, Boca Raton, FL, 1996. https://doi.org/10.1201/9781420049985 
  12. M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math. 36 (2010), no. 1, 33-50. https://doi.org/10.1007/s10476-010-0102-8 
  13. M. Izuki, E. Nakai, and Y. Sawano, Wavelet characterization and modular inequalities for weighted Lebesgue spaces with variable exponent, Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 2, 551-571. https://doi.org/10.5186/aasfm.2015.4032 
  14. Y. Jiao, Y. Zuo, D. Zhou, and L. Wu, Variable Hardy-Lorentz spaces Hp(·),q(ℝn), Math. Nachr. 292 (2019), no. 2, 309-349. https://doi.org/10.1002/mana.201700331 
  15. H. Kempka and J. Vybiral, Lorentz spaces with variable exponents, Math. Nachr. 287 (2014), no. 8-9, 938-954. https://doi.org/10.1002/mana.201200278 
  16. T. Kopaliani, Greediness of the wavelet system in Lp(t)(ℝ) spaces, East J. Approx. 14 (2008), no. 1, 59-67. 
  17. Y. Liang and D. Yang, Intrinsic square function characterizations of Musielak-Orlicz Hardy spaces, Trans. Amer. Math. Soc. 367 (2015), no. 5, 3225-3256. https://doi.org/10.1090/S0002-9947-2014-06180-1 
  18. J.-L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Publ. Math. Inst. 19 (1964), 5-68.  https://doi.org/10.1007/BF02684796
  19. H. Liu, The wavelet characterization of the space Weak H1, Studia Math. 103 (1992), no. 1, 109-117. https://doi.org/10.4064/sm-103-1-109-117 
  20. Y. F. Meyer, Wavelets and operators, translated from the 1990 French original by D. H. Salinger, Cambridge Studies in Advanced Mathematics, 37, Cambridge Univ. Press, Cambridge, 1992. 
  21. E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal. 262 (2012), no. 9, 3665-3748. https://doi.org/10.1016/j.jfa.2012.01.004 
  22. W. Orlicz, Uber konjugierte exponentenfolgen, Studia Mathematica 3 (1931), no. 1, 200-211.  https://doi.org/10.4064/sm-3-1-200-211
  23. Y. Sawano, Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators, Integral Equations Operator Theory 77 (2013), no. 1, 123-148. https://doi.org/10.1007/s00020-013-2073-1 
  24. H. Triebel, Theory of function spaces. III, Monographs in Mathematics, 100, Birkhauser Verlag, Basel, 2006. 
  25. S. Wu, A wavelet characterization for weighted Hardy spaces, Rev. Mat. Iberoamericana 8 (1992), no. 3, 329-349. https://doi.org/10.4171/RMI/127 
  26. C. Zhuo, D. Yang, and Y. Liang, Intrinsic square function characterizations of Hardy spaces with variable exponents, Bull. Malays. Math. Sci. Soc. 39 (2016), no. 4, 1541-1577. https://doi.org/10.1007/s40840-015-0266-2