References
- A. Calderon, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190. https://doi.org/10.4064/sm-24-2-113-190
- D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis, Birkhauser/Springer, Heidelberg, 2013. https://doi.org/10.1007/978-3-0348-0548-3
- L. Diening, Maximal function on generalized Lebesgue spaces Lp(·), Math. Inequal. Appl. 7 (2004), no. 2, 245-253. https://doi.org/10.7153/mia-07-27
- C. Fefferman, N. M. Riviere, and Y. Sagher, Interpolation between Hp spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 75-81. https://doi.org/10.2307/1996982
- R. Fefferman and F. Soria, The space Weak H1, Studia Math. 85 (1986), no. 1, 1-16 (1987). https://doi.org/10.4064/sm-85-1-1-16
- G. B. Folland and E. M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, 28, Princeton Univ. Press, Princeton, NJ, 1982.
- X. Fu, Equivalent characterizations of Hardy spaces with variable exponent via wavelets, Front. Math. China 14 (2019), no. 4, 737-759. https://doi.org/10.1007/s11464-019-0777-5
- X. Fu and D. C. Yang, Wavelet characterizations of Musielak-Orlicz Hardy spaces, Banach J. Math. Anal. 12 (2018), no. 4, 1017-1046. https://doi.org/10.1215/17358787-2018-0010
- X. Fu and D. C. Yang, Wavelet characterizations of the atomic Hardy space H1 on spaces of homogeneous type, Appl. Comput. Harmon. Anal. 44 (2018), no. 1, 1-37. https://doi.org/10.1016/j.acha.2016.04.001
- J. Garcia-Cuerva and J. M. Martell, Wavelet characterization of weighted spaces, J. Geom. Anal. 11 (2001), no. 2, 241-264. https://doi.org/10.1007/BF02921965
- E. Hernandez and G. L. Weiss, A First Course on Wavelets, Studies in Advanced Mathematics, CRC, Boca Raton, FL, 1996. https://doi.org/10.1201/9781420049985
- M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math. 36 (2010), no. 1, 33-50. https://doi.org/10.1007/s10476-010-0102-8
- M. Izuki, E. Nakai, and Y. Sawano, Wavelet characterization and modular inequalities for weighted Lebesgue spaces with variable exponent, Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 2, 551-571. https://doi.org/10.5186/aasfm.2015.4032
- Y. Jiao, Y. Zuo, D. Zhou, and L. Wu, Variable Hardy-Lorentz spaces Hp(·),q(ℝn), Math. Nachr. 292 (2019), no. 2, 309-349. https://doi.org/10.1002/mana.201700331
- H. Kempka and J. Vybiral, Lorentz spaces with variable exponents, Math. Nachr. 287 (2014), no. 8-9, 938-954. https://doi.org/10.1002/mana.201200278
- T. Kopaliani, Greediness of the wavelet system in Lp(t)(ℝ) spaces, East J. Approx. 14 (2008), no. 1, 59-67.
- Y. Liang and D. Yang, Intrinsic square function characterizations of Musielak-Orlicz Hardy spaces, Trans. Amer. Math. Soc. 367 (2015), no. 5, 3225-3256. https://doi.org/10.1090/S0002-9947-2014-06180-1
- J.-L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Publ. Math. Inst. 19 (1964), 5-68. https://doi.org/10.1007/BF02684796
- H. Liu, The wavelet characterization of the space Weak H1, Studia Math. 103 (1992), no. 1, 109-117. https://doi.org/10.4064/sm-103-1-109-117
- Y. F. Meyer, Wavelets and operators, translated from the 1990 French original by D. H. Salinger, Cambridge Studies in Advanced Mathematics, 37, Cambridge Univ. Press, Cambridge, 1992.
- E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal. 262 (2012), no. 9, 3665-3748. https://doi.org/10.1016/j.jfa.2012.01.004
- W. Orlicz, Uber konjugierte exponentenfolgen, Studia Mathematica 3 (1931), no. 1, 200-211. https://doi.org/10.4064/sm-3-1-200-211
- Y. Sawano, Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators, Integral Equations Operator Theory 77 (2013), no. 1, 123-148. https://doi.org/10.1007/s00020-013-2073-1
- H. Triebel, Theory of function spaces. III, Monographs in Mathematics, 100, Birkhauser Verlag, Basel, 2006.
- S. Wu, A wavelet characterization for weighted Hardy spaces, Rev. Mat. Iberoamericana 8 (1992), no. 3, 329-349. https://doi.org/10.4171/RMI/127
- C. Zhuo, D. Yang, and Y. Liang, Intrinsic square function characterizations of Hardy spaces with variable exponents, Bull. Malays. Math. Sci. Soc. 39 (2016), no. 4, 1541-1577. https://doi.org/10.1007/s40840-015-0266-2