DOI QR코드

DOI QR Code

Cone-beam computed tomographic evaluation of mandibular incisor alveolar bone changes for the intrusion arch technique: A retrospective cohort research

  • Lin Lu (Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province) ;
  • Jiaping Si (Department of Stomatology, Integrated Traditional and Western Medicine Hospital of Linping District) ;
  • Zhikang Wang (Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province) ;
  • Xiaoyan Chen (Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province)
  • Received : 2023.09.11
  • Accepted : 2023.12.27
  • Published : 2024.03.25

Abstract

Objective: Alveolar bone loss is a common adverse effect of intrusion treatment. Mandibular incisors are prone to dehiscence and fenestrations as they suffer from thinner alveolar bone thickness. Methods: Thirty skeletal class II patients treated with mandibular intrusion arch therapy were included in this study. Lateral cephalograms and cone-beam computed tomography images were taken before treatment (T1) and immediately after intrusion arch removal (T2) to evaluate the tooth displacement and the alveolar bone changes. Pearson's and Spearman's correlation was used to identify risk factors of alveolar bone loss during the intrusion treatment. Results: Deep overbite was successfully corrected (P < 0.05), accompanied by mandibular incisor proclination (P < 0.05). There were no statistically significant change in the true incisor intrusion (P > 0.05). The labial and lingual vertical alveolar bone levels showed a significant decrease (P < 0.05). The alveolar bone is thinning in the labial crestal area and lingual apical area (P < 0.05); accompanied by thickening in the labial apical area (P < 0.05). Proclined incisors, non-extraction treatment, and increased A point-nasion-B point (ANB) degree were positively correlated with alveolar bone loss. Conclusions: While the mandibular intrusion arch effectively corrected the deep overbite, it did cause some unwanted incisor labial tipping/flaring. During the intrusion treatment, the alveolar bone underwent corresponding changes, which was thinning in the labial crestal area and thickening in the labial apical area vice versa. And increased axis change of incisors, non-extraction treatment, and increased ANB were identified as risk factors for alveolar bone loss in patients with mandibular intrusion therapy.

Keywords

Acknowledgement

This work was supported by the Fundamental Research Funds for the Central Universities (grant number 2021FZZX005-36), National Natural Science Foundation of China (grant number 82271008), and China Oral Health Foundation (grant numbers A2021-090 and A2023-03).

References

  1. Antoun JS, Mei L, Gibbs K, Farella M. Effect of orthodontic treatment on the periodontal tissues. Periodontol 2000 2017;74:140-57. https://doi.org/10.1111/prd.12194 
  2. Sonnesen L, Svensson P. Temporomandibular disorders and psychological status in adult patients with a deep bite. Eur J Orthod 2008;30:621-9. https://doi.org/10.1093/ejo/cjn044 
  3. Thote AM, Uddanwadiker RV, Sharma K, Shrivastava S. Optimum force system for intrusion and extrusion of maxillary central incisor in labial and lingual orthodontics. Comput Biol Med 2016;69:112-9. https://doi.org/10.1016/j.compbiomed.2015.12.014 
  4. Elkholy F, Wulf S, Jager R, Schmidt F, Lapatki BG. Mechanical loads exerted by different configurations of Burstone's 3-piece segmented mechanics during a simulated intrusion of the mandibular incisors. Am J Orthod Dentofacial Orthop 2023;164:106-15. https://doi.org/10.1016/j.ajodo.2022.11.014 
  5. Alam F, Chauhan AK, Sharma A, Verma S, Raj Y. Comparative cone-beam computed tomographic evaluation of maxillary incisor intrusion and associated root resorption: intrusion arch vs mini-implants. Am J Orthod Dentofacial Orthop 2023;163:e84-92. https://doi.org/10.1016/j.ajodo.2022.12.007 
  6. de Almeida MR, Marcal ASB, Fernandes TMF, Vasconcelos JB, de Almeida RR, Nanda R. A comparative study of the effect of the intrusion arch and straight wire mechanics on incisor root resorption: a randomized, controlled trial. Angle Orthod 2018;88:20-6. https://doi.org/10.2319/06417-424R 
  7. Kee YJ, Moon HE, Lee KC. Evaluation of alveolar bone changes around mandibular incisors during surgical orthodontic treatment of patients with mandibular prognathism: surgery-first approach vs conventional orthognathic surgery. Am J Orthod Dentofacial Orthop 2023;163:87-94. https://doi.org/10.1016/j.ajodo.2021.08.028 
  8. Kalina E, Grzebyta A, Zadurska M. Bone remodeling during orthodontic movement of lower incisors-narrative review. Int J Environ Res Public Health 2022;19:15002. https://doi.org/10.3390/ijerph192215002 
  9. Beckmann SH, Kuitert RB, Prahl-Andersen B, Segner D, The RP, Tuinzing DB. Alveolar and skeletal dimensions associated with lower face height. Am J Orthod Dentofacial Orthop 1998;113:498-506. https://doi.org/10.1016/s0889-5406(98)70260-4 
  10. Beckmann SH, Kuitert RB, Prahl-Andersen B, Segner D, The RP, Tuinzing DB. Alveolar and skeletal dimensions associated with overbite. Am J Orthod Dentofacial Orthop 1998;113:443-52. https://doi.org/10.1016/S0889-5406(98)80017-6 
  11. Sameshima GT, Asgarifar KO. Assessment of root resorption and root shape: periapical vs panoramic films. Angle Orthod 2001;71:185-9. https://pubmed.ncbi.nlm.nih.gov/11407770/ 
  12. Aydogdu E, Ozsoy OP. Effects of mandibular incisor intrusion obtained using a conventional utility arch vs bone anchorage. Angle Orthod 2011;81:767-75. https://doi.org/10.2319/120610-703.1 
  13. Erkan M, Pikdoken L, Usumez S. Gingival response to mandibular incisor intrusion. Am J Orthod Dentofacial Orthop 2007;132:143.e9-13. https://doi.org/10.1016/j.ajodo.2006.10.015 
  14. Polat-Ozsoy O, Arman-Ozcirpici A, Veziroglu F, Cetinsahin A. Comparison of the intrusive effects of miniscrews and utility arches. Am J Orthod Dentofacial Orthop 2011;139:526-32. https://doi.org/10.1016/j.ajodo.2009.05.040 
  15. Smith RJ, Burstone CJ. Mechanics of tooth movement. Am J Orthod 1984;85:294-307. https://doi.org/10.1016/0002-9416(84)90187-8 
  16. Christensen JR, Fields H, Sheats RD. Treatment planning and management of orthodontic problems. In: Nowak AJ, Christensen JR, Mabry TR, Townsend JA, Wells MH, eds. Pediatric dentistry. Philadelphia: Elsevier; 2019. p. 512-53.e3. https://doi.org/10.1016/B978-0-323-60826-8.00036-5 
  17. Vela-Hernandez A, Gutierrez-Zubeldia L, Lopez-Garcia R, Garcia-Sanz V, Paredes-Gallardo V, GandiaFranco JL, et al. One versus two anterior miniscrews for correcting upper incisor overbite and angulation: a retrospective comparative study. Prog Orthod 2020;21:34. https://doi.org/10.1186/s40510-020-00336-2 
  18. Ng J, Major PW, Heo G, Flores-Mir C. True incisor intrusion attained during orthodontic treatment: a systematic review and meta-analysis. Am J Orthod Dentofacial Orthop 2005;128:212-9. https://doi.org/10.1016/j.ajodo.2004.04.025 
  19. Shakti P, Ani GS, Peter E, Haider K, Kumar J. Maxillary incisor intrusion using two conventional intrusion arches and mini implants: a prospective study. J Contemp Dent Pract 2021;22:907-13. https://pubmed.ncbi.nlm.nih.gov/34753843/  https://doi.org/10.5005/jp-journals-10024-3136
  20. Kale Varlik S, Onur Alpakan O, Turkoz C. Deepbite correction with incisor intrusion in adults: a longterm cephalometric study. Am J Orthod Dentofacial Orthop 2013;144:414-9. https://doi.org/10.1016/j.ajodo.2013.04.014 
  21. Atik E, Gorucu-Coskuner H, Akarsu-Guven B, Taner T. Evaluation of changes in the maxillary alveolar bone after incisor intrusion. Korean J Orthod 2018;48:367-76. https://doi.org/10.4041/kjod.2018.48.6.367 
  22. Bayani S, Heravi F, Radvar M, Anbiaee N, Madani AS. Periodontal changes following molar intrusion with miniscrews. Dent Res J (Isfahan) 2015;12:379-85. https://doi.org/10.4103/1735-3327.161462 
  23. Hernandez-Sayago E, Espinar-Escalona E, BarreraMora JM, Ruiz-Navarro MB, Llamas-Carreras JM, Solano-Reina E. Lower incisor position in different malocclusions and facial patterns. Med Oral Patol Oral Cir Bucal 2013;18:e343-50. https://doi.org/10.4317/medoral.18434 
  24. Corelius M, Linder-Aronson S. The relationship between lower incisor inclination and various reference lines. Angle Orthod 1976;46:111-7. https://pubmed.ncbi.nlm.nih.gov/1064340/  1064340/
  25. Molina-Berlanga N, Llopis-Perez J, Flores-Mir C, Puigdollers A. Lower incisor dentoalveolar compensation and symphysis dimensions among Class I and III malocclusion patients with different facial vertical skeletal patterns. Angle Orthod 2013;83:948-55. https://doi.org/10.2319/011913-48.1 
  26. Rozzi M, Mucedero M, Pezzuto C, Cozza P. Leveling the curve of Spee with continuous archwire appliances in different vertical skeletal patterns: a retrospective study. Am J Orthod Dentofacial Orthop 2017;151:758-66. https://doi.org/10.1016/j.ajodo.2016.09.023 
  27. Yodthong N, Charoemratrote C, Leethanakul C. Factors related to alveolar bone thickness during upper incisor retraction. Angle Orthod 2013;83:394-401. https://doi.org/10.2319/062912-534.1 
  28. Zeitounlouian TS, Zeno KG, Brad BA, Haddad RA. Three-dimensional evaluation of the effects of injectable platelet rich fibrin (i-PRF) on alveolar bone and root length during orthodontic treatment: a randomized split mouth trial. BMC Oral Health 2021;21:92. https://doi.org/10.1186/s12903-021-01456-9 
  29. Chung DH, Park YG, Kim KW, Cha KS. Factors affecting orthodontically induced root resorption of maxillary central incisors in the Korean population. Korean J Orthod 2011;41:174-83. https://doi.org/10.4041/kjod.2011.41.3.174 
  30. Irvine R, Power S, McDonald F. The effectiveness of laceback ligatures: a randomized controlled clinical trial. J Orthod 2004;31:303-11; discussion 300. https://doi.org/10.1179/146531204225020606 
  31. Schwertner A, de Almeida RR, de Almeida-Pedrin RR, Fernandes TMF, Oltramari P, de Almeida MR. A prospective clinical trial of the effects produced by the Connecticut intrusion arch on the maxillary dental arch. Angle Orthod 2020;90:500-6. https://doi.org/10.2319/102219-666.1 
  32. Coskun I, Kaya B. Relationship between alveolar bone thickness, tooth root morphology, and sagittal skeletal pattern: a cone beam computed tomography study. J Orofac Orthop 2019;80:144-58. https://doi.org/10.1007/s00056-019-00175-9 
  33. Gracco A, Luca L, Bongiorno MC, Siciliani G. Computed tomography evaluation of mandibular incisor bony support in untreated patients. Am J Orthod Dentofacial Orthop 2010;138:179-87. https://doi.org/10.1016/j.ajodo.2008.09.030 
  34. Hoang N, Nelson G, Hatcher D, Oberoi S. Evaluation of mandibular anterior alveolus in different skeletal patterns. Prog Orthod 2016;17:22. https://doi.org/10.1186/s40510-016-0135-z