• Title/Summary/Keyword: Alveolar bone

Search Result 1,285, Processing Time 0.033 seconds

Alveolar ridge augmentation for implant placement (임플란트식립을 위한 치조제증대술)

  • Yu, Sang-Joun
    • The Journal of the Korean dental association
    • /
    • v.57 no.12
    • /
    • pp.768-777
    • /
    • 2019
  • Alveolar bone resorption are unpredictable and always occur after tooth extraction. Such bone resorption causes insufficient alveolar ridge which make implant placement difficult. There are many techniques to increase the alveolar ridge. Representative procedures include ridge split, guided bone regeneration, bone graft using autogenous block bone, and alveolar distraction. In each procedure, there are indications and complications. Depending on the shape and the width of bone defects, we can choose procedures for horizontal bone augmentation and vertical bone augmentation.

  • PDF

BONE FORMATION BY HUMAN ALVEOLAR BONE CELLS (사람 치조골세포를 이용한 골형성)

  • Choi, Byung-Ho;Park, Jin-Hyoung;Huh, Jin-Young;Oh, Jin-Rok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.1
    • /
    • pp.42-45
    • /
    • 2002
  • Cultures of primary human alveolar bone-derived cells were established from alveolar bone chips obtained from normal individuals undergoing tooth extraction. These cells were expanded in vitro until passage 3 and used for the in vivo assays. Cells were loaded into transplantation vehicles, and transplanted subcutaneously into immunodeficient mice to study the capacities of human alveolar bone-derived cells to form bone in vivo. Transplants were harvested 12 weeks after transplantation and evaluated histologically. Of 10 human alveolar bone-derived cell transplants, two formed a bone-like tissue that featured osteocytes and mineral. Eight of the ten formed no osseous tissue. These results show that cells from normal human alveolar bone are capable of forming bone-like tissue when transplanted into immunodeficient mice.

DENTAL IMPLANT TREATMENT WITH ILIAC BONE GRAFT VIA TWO-STAGE APPROACH FOR AVULSED ALVEOLAR BONE DEFECTS; CASE REPORT (외상성 치조골 상실 후 장골 이식을 동반한 이회법 임플란트 치료; 증례보고)

  • Choi, Young-Jun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.4
    • /
    • pp.386-390
    • /
    • 2007
  • This is about the case of loss of multiple teeth and alveolar bone caused by trauma, which needed alveolar bone augmentation before implant treatment. Alveolar bone was reconstructed using iliac bone graft, and thereafter first implant surgery was followed by consolidation period of 3 months. Iliac bone resorption was observed at the time of implant placement. And that resorption was more in the horizontal dimension than in the vertical. We conclude that additional treatment planning(e.g. using alveolar distraction osteogenesis or tissue expander) should be considered besides bone graft for vertical alveolar bone augmentation. For both maxilla and mandible, prosthodontic treatment was carried out $4{\sim}5$ months after implant placement. To compensate alveolar bone deficiency, partial hybrid overdenture on maxilla and implant-supported fixed bridge on mandible were fabricated, and the total treatment was finished.

Use of mandibular chin bone for alveolar bone grafting in cleft patients

  • Park, Young-Wook;Lee, Jang-Ha
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.45.1-45.7
    • /
    • 2016
  • Background: We evaluated and compared the outcomes of different ossification processes in patients with alveolar cleft in whom correction was performed using endochondral bone graft or intramembranous bone graft. Methods: The patients were divided into two groups: the endochondral bone (iliac bone or rib bone) graft group and the intramembranous bone (mandibular bone) graft group. Medical records and radiologic images of patients who underwent alveolar bone grafting due to alveolar cleft were analyzed retrospectively. Through postoperative and follow-up radiologic images, the height of the interdental bone septum was classified into four types based on the highest point of alveolar ridge. Then, the height of the interdental bone septum and the area of the bone graft were evaluated according to the type of bone graft. In addition, the occurrence of complications and the need for an additional bone graft, the result of postoperative orthodontic treatment, and the eruption of impacted teeth were investigated. Results: Thirty patients were included in this study. There was no significant difference in the change of the interdental bone height and the area of the bone graft according to the type of bone. There was no significant difference in the success rate of the surgery according to the type of bone. One patient underwent an additional bone graft surgery during the follow-up period. Conclusions: The outcomes of alveolar bone grafting were not significantly different according to the type of bone graft. If appropriate to the size of the recipient site, the chin bone is a useful graft material in alveolar cleft, as is the iliac bone.

Secondary bone grafting for alveolar clefts: surgical timing, graft materials, and evaluation methods

  • Kim, Junhyung;Jeong, Woonhyeok
    • Archives of Craniofacial Surgery
    • /
    • v.23 no.2
    • /
    • pp.53-58
    • /
    • 2022
  • Alveolar cleft belongs to the spectrum of cleft lip and/or palate, affecting 75% of cleft lip/palate patients. The goals of alveolar cleft treatment are stabilizing the maxillary arch, separating the nasal and oral cavities, and providing bony support for both erupting teeth and the nasal base via the piriform aperture. Secondary alveolar bone grafting is a well-established treatment option for alveolar cleft. Secondary alveolar bone grafting is performed during the period of mixed dentition using autologous bone from various donor sites. There are several issues relevant to maximizing the success of secondary alveolar bone grafting, including the surgical timing, graft material, and surgical technique. In this study, we reviewed issues related to surgical timing, graft materials, and evaluation methods in secondary alveolar bone grafting.

Assessment of lower incisor alveolar bone width using cone-beam computed tomography images in skeletal Class III adults of different vertical patterns

  • Lee, Sanghee;Hwang, Soonshin;Jang, Woowon;Choi, Yoon Jeong;Chung, Chooryung J;Kim, Kyung-Ho
    • The korean journal of orthodontics
    • /
    • v.48 no.6
    • /
    • pp.349-356
    • /
    • 2018
  • Objective: This study was performed to investigate the alveolar bone of lower incisors in skeletal Class III adults of different vertical facial patterns and to compare it with that of Class I adults using cone-beam computed tomography (CBCT) images. Methods: CBCT images of 90 skeletal Class III and 29 Class I patients were evaluated. Class III subjects were divided by mandibular plane angle: high (SN-MP > $38.0^{\circ}$), normal ($30.0^{\circ}$ < SN-MP < $37.0^{\circ}$), and low (SN-MP < $28.0^{\circ}$) groups. Buccolingual alveolar bone thickness was measured using CBCT images of mandibular incisors at alveolar crest and 3, 6, and 9 mm apical levels. Linear mixed model, Bonferroni post-hoc test, and Pearson correlation analysis were used for statistical significance. Results: Buccolingual alveolar bone in Class III high, normal and low angle subjects was not significantly different at alveolar crest and 3 mm apical level while lingual bone was thicker at 6 and 9 mm apical levels than on buccal side. Class III high angle group had thinner alveolar bone at all levels except at buccal alveolar crest and 9 mm apical level on lingual side compared to the Class I group. Class III high angle group showed thinner alveolar bone than the Class III normal or low angle groups in most regions. Mandibular plane angle showed negative correlations with mandibular anterior alveolar bone thickness. Conclusions: Skeletal Class III subjects with high mandibular plane angles showed thinner mandibular alveolar bone in most areas compared to normal or low angle subjects. Mandibular plane angle was negatively correlated with buccolingual alveolar bone thickness.

ISOLATION OF HUMAN ALVEOLAR BONE-DERIVED CELLS AND IN VITRO AMPLIFICATION FOR TISSUE ENGINEERING (조직공학용 사람 치조골세포의 인공증식)

  • Choi, Byung-Ho;Park, Jin-Hyoung;Huh, Jin-Young;Yoo, Jae-Ha
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.5
    • /
    • pp.453-456
    • /
    • 2001
  • Background: Autogenous alveolar bone cell transplantation may be suitable for tissue engineering for alveolar bone reconstruction. This study aimed to isolate human alveolar bone-derived cells (HABDCs) and to evaluate the ability of collagen gels to support HABDC proliferation and differentiation for human alveolar bone tissue engineering applications. Method: Cultures of primary HABDCs were established from alveolar bone chips obtained from 10 persons undergoing tooth extraction. These cells were expanded in vitro until passage 3 and used for the in vitro characterization of HABDCs and the in vitro analysis of collagen gels for alveolar bone tissue engineering. Results: Of the 10 attempts made to obtain HABDC cultures, eight were successful. HABDCs expressed the osteoblastic phenotype characterized by alkaline phosphatase activity, osteocalcin expression and the mineralization of the extracellular matrix in vitro. When seeded on collagen gels, HABDCs penetrated into the collagen gel matrices and proliferated inside the gels. Significantly, when HABDCs were embedded into the gels, collagen fibers and mineralization were produced within the gels. Conclusion: This study demonstrates the feasibility of using cultured HABDCs and collagen gels for human alveolar bone tissue engineering applications.

  • PDF

Analysis of Repeated Bone Graft after Secondary Bone Graft in Children with Alveolar Cleft (치조열에서 재 시행한 골이식의 분석)

  • Koh, Kyung Suck;Lee, Sung Wook;Choi, Jong Woo;Lee, Young Kyoo;Kwoun, Soon Man
    • Archives of Plastic Surgery
    • /
    • v.35 no.3
    • /
    • pp.273-278
    • /
    • 2008
  • Purpose: The most widely accepted protocol for alveolar cleft reconstruction is to repair it during the mixed dentition stage. There were lower resorption rate (about 88%) at this stage. However we found some cases that need repeated bone grafting. Therefore we sought to analyze the cause of repeated alveolar bone grafting in connection with other factors. Methods: From January 2000 to January 2006, thirty-nine secondary alveolar bone grafts with iliac crest spongiosa were carried out. In 39 patients, 5 patients who had significant bone graft resorption received repeated alveolar bone graft. In all the cases, the causes of repeated bone grafts were dental root exposure(angulation), and the deficiency of the bony support for lateral incisor or canine eruption. In 3 cases, there was deficiency of the alveolar bone at the cleft side. There was the need of repeated bone grafts for orthodontic treatment in 2 cases and for application of dental implants in 1 case. Results: During the follow-up period, the clinical and radiologic examinations showed that repeated alveolar bone grafts were maintained successfully without any complications. The volume of the repeated bone graft was sufficient for orthodontic treatment and implantation. Conclusion: The essential conditions for successful alveolar bone grafting includes the status of cleft sided teeth, further treatment and planed schedule, as well as canine eruption. Alveolar bone grafting has to be performed with difference of each case in mind.

The preliminary study for three-dimensional alveolar bone morphologic characteristics for alveolar bone restoration

  • Cho, Hyun-Jae;Jeon, Jae-Yun;Ahn, Sung-Jin;Lee, Sung-Won;Chung, Joo-Ryun;Park, Chang-Joo;Hwang, Kyung-Gyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.33.1-33.7
    • /
    • 2019
  • Background: The concept of the ideal morphology for the alveolar bone form is an important element to reconstruct or restore the in maximizing esthetic profile and functional alveolar bone restoration. The purpose of this preliminary study is to evaluate the normal alveolar bone structure to provide the standard reference and guide template for use in diagnosing for implant placement, determining the correct amount of bone augmentation in actual clinical practice and producing prostheses based on three-dimensional imaging assessment of alveolar bone. Methods: This study was included 11 men and 11 women (average age, 22.6 and 24.5 years, respectively) selected from among 127 patients. The horizontal widths of alveolar bone of maxilla and mandible were measured at the crestal, mid-root, and root apex level on MDCT (multi-detector computed tomography) images reconstructed by medical imaging software. In addition, tooth dimensions of the central incisors, canines, second premolars, and first molars of maxilla and mandible, including the horizontal width of the interdental alveolar bone crest, were also measured and statistically analyzed. Results: The horizontal alveolar bone width of the palatal side of maxilla showed a distinct increment from the alveolar bone crest to the apical region in both anterior and posterior areas. The average widths of the maxillary alveolar ridge were as follows: central incisor, 7.43 mm; canine, 8.91 mm; second premolar, 9.57 mm; and first molar, 12.38 mm. The average widths of the mandibular alveolar ridge were as follows: central incisor, 6.21 mm; canine, 8.55 mm; second premolar, 8.45 mm; and first molar, 10.02 mm. In the buccal side, the alveolar bone width was not increased from the crest to the apical region. The horizontal alveolar bone width of an apical and mandibular border region was thinner than at the mid-root level. Conclusions: The results of the preliminary study are useful as a clinical guideline when determining dental implant diameter and position. And also, these measurements can also be useful during the production of prefabricated membranes and customized alveolar bone scaffolds.

Prediction of the alveolar bone level after the extraction of maxillary anterior teeth with severe periodontitis

  • Hong, Chul Eui;Lee, Ju-Youn;Choi, Jeomil;Joo, Ji-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.6
    • /
    • pp.216-222
    • /
    • 2015
  • Purpose: After extraction, the alveolar bone tends to undergo atrophy in three-dimensions. The amount of alveolar bone loss in the horizontal dimension has been reported to be greater than the amount of bone loss in the vertical dimension, and is most pronounced in the buccal aspect. The aim of this study was to monitor the predictive alveolar bone level following the extraction of anterior teeth seriously involved with advanced chronic periodontitis. Methods: This study included 25 patients with advanced chronic periodontitis, whose maxillary anterior teeth had been extracted due to extensive attachment loss more than one year before the study. Periapical radiographs were analyzed to assess the vertical level of alveolar bone surrounding the edentulous area. An imaginary line connecting the mesial and the distal ends of the alveolar crest facing the adjacent tooth was arbitrarily created. Several representative coordinates were established in the horizontal direction, and the vertical distance from the imaginary line to the alveolar crest was measured at each coordinate for each patient using image analysis software. Regression functions predicting the vertical level of the alveolar bone in the maxillary anterior edentulous area were identified for each patient. Results: The regression functions demonstrated a tendency to converge to parabolic shapes. The predicted maximum distance between the imaginary line and the alveolar bone calculated using the regression function was $1.43{\pm}0.65mm$. No significant differences were found between the expected and actual maximum distances. Likewise, the predicted and actual maximum horizontal distances did not show any significant differences. The distance from the alveolar bone crest to the imaginary lines was not influenced by the mesio-distal spans of the edentulous area. Conclusions: After extraction, the vertical level of the alveolar ridge increased to become closer to the reference line connecting the mesial and distal alveolar crests.