• Title/Summary/Keyword: Intrusion arch

Search Result 42, Processing Time 0.028 seconds

A FEM ANALYSIS FOR INITIAL STRESS ON THE UPPER GAMINE BY ORTHODONTIC FORCE OF INTRUSION ARCH WIRE ACTIVATION (Intrusion arch wire activation시 상악 견치에 가해진 초기응력의 유한요소법을 통한 고찰)

  • Kang, Jeong-Weon;Cha, Kyung-Suk;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.28 no.3 s.68
    • /
    • pp.391-398
    • /
    • 1998
  • The purpose of this study was to find the distribution and measurement of compressive and tensile stress when intrusi- on arch wire is forced engage with upper canine and to analysis stress at each section through FEM. And we compare compressive and tensile ratio at each section. The results were as follows. 1. At FA point and cemento-enamel junction of upper canine, compressive and tensile force ratio is about the same. 2. At apex, compressive force is the four times as tensile force. ; In intrusion, we show root resorption at apex. 3. At Cemento-enamel junction, the compressive and tensile force show the maximun value except FA Point.

  • PDF

MECHANICAL ANALYSIS ON THE SHAPE-MEMORY ARCH WIRE (형상기억합금 호선의 역학적 해석)

  • Lee, Jin-Hyung;Nahm, Dong-Seok
    • The korean journal of orthodontics
    • /
    • v.24 no.3 s.46
    • /
    • pp.735-758
    • /
    • 1994
  • This study was designed to investigate the displacements and reaction forces of teeth caused by the application of the rectangular shape-memory arch wires with curve of Spee. Computer-aided three dimensional finite element method was adopted. This finite element model consists of brick element for teeth, beam element for the wire, and contact element for the periodontal ligament. And the application of the MEAW(Multiloop Edgewise Arch Wire) was also studied so that the results of the two methods can be compared each other. Total number of the nodes and elements were found to be 5925 and 4031, repectively. In addition, several types of elastics and corresponding displacements and reaction forces were examined. The findings of this study were as follows: 1. When the rectangular shape-memory arch wire with curve of Sun was used alone, the intrusion and labioversion was noticeable on the upper incisors, while the upper molars showed less intrusion. With MEAW, the intrusion and labioversion of the upper incisors were slightly larger than those when the shape-memory arch wire was used, but on the upper molars the opposite result was obtained with respect to the intrusion. 2. The shape-memory arch wire with the vertical elastics caused the larger downward displacement on the upper canine than that when the MEAW was used with the vertical elastics. However, the downward displacement of the upper incisors was larger in MEAW. The uprighting and buccoversion of the molars were observed in both cases. 3. The use of the Class II or III elastics showed the extrusion and changes in torque of the corresponding teeth. The downward displacement of the upper canine was increased when the Class II and vertical elastics were applied simultaneously, but it was decreased when both of the Class III and vertical elastics were used.

  • PDF

Cone-beam computed tomographic evaluation of mandibular incisor alveolar bone changes for the intrusion arch technique: A retrospective cohort research

  • Lin Lu;Jiaping Si;Zhikang Wang;Xiaoyan Chen
    • The korean journal of orthodontics
    • /
    • v.54 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • Objective: Alveolar bone loss is a common adverse effect of intrusion treatment. Mandibular incisors are prone to dehiscence and fenestrations as they suffer from thinner alveolar bone thickness. Methods: Thirty skeletal class II patients treated with mandibular intrusion arch therapy were included in this study. Lateral cephalograms and cone-beam computed tomography images were taken before treatment (T1) and immediately after intrusion arch removal (T2) to evaluate the tooth displacement and the alveolar bone changes. Pearson's and Spearman's correlation was used to identify risk factors of alveolar bone loss during the intrusion treatment. Results: Deep overbite was successfully corrected (P < 0.05), accompanied by mandibular incisor proclination (P < 0.05). There were no statistically significant change in the true incisor intrusion (P > 0.05). The labial and lingual vertical alveolar bone levels showed a significant decrease (P < 0.05). The alveolar bone is thinning in the labial crestal area and lingual apical area (P < 0.05); accompanied by thickening in the labial apical area (P < 0.05). Proclined incisors, non-extraction treatment, and increased A point-nasion-B point (ANB) degree were positively correlated with alveolar bone loss. Conclusions: While the mandibular intrusion arch effectively corrected the deep overbite, it did cause some unwanted incisor labial tipping/flaring. During the intrusion treatment, the alveolar bone underwent corresponding changes, which was thinning in the labial crestal area and thickening in the labial apical area vice versa. And increased axis change of incisors, non-extraction treatment, and increased ANB were identified as risk factors for alveolar bone loss in patients with mandibular intrusion therapy.

A PHOTOELASTIC STUDY OF THE STRESS DISTRIBUTION BY MULTILOOP EDGEWISE ARCH WIRE (Multiloop Edgewise Arch Wire가 야기하는 응력분포에 관한 광탄성학적 연구)

  • Yeom, Jeong Bae;Rhee, Byung Tae
    • The korean journal of orthodontics
    • /
    • v.20 no.2
    • /
    • pp.267-280
    • /
    • 1990
  • The purpose of this study was to investigate the force mechanism of Multiloop Edgewise Arch Wire and the intensity and distribution of stresses with vertical and intermaxillary elastics. The obtained results were as follows. 1. When plain wires were inserted and vertical and intermaxillary elastics were used in the upper and lower arch, the stresses of the anterior and posterior ends of wires were observed greatly but the stresses of the premolar were very small. 2. When MEAW were inserted in upper and lower arch, the upper 1st and 2nd premolar and the lower 1st premolar were extruded greatly. 3. In the area of the upper 1st molar and the lower 2nd premolar and the lower 1st molar, any stresses were not observed. 4. The vertical elastic counteracted the intrusion force of the MEAW in the anterior teeth but could not affect on posterior teeth. Using with the Class II elastics, the distal tipping force and extrusion force were exerted in the upper anterior teeth and the intrusion forces of the lower anterior teeth were relieved. Using with the Class III elastics, the extrusion force were exerted in the upper and lower anterior teeth, the distal tipping force were increased in the lower posterior teeth. 5. The Class II elastic counteracted the anterior intrusion force of the MEAW and extruded and tipped mesially the lower 2nd molar. The intrusion force of the MEAW also could not overcome the extrusion force of the class II elastics. 6. When the Class III elastics were engaged, the upper 2nd molar was extruded in spite of the intrusion forces of the MEAW and the extrusion forces of the lower anterior teeth and distal tipping forces in the posterior teeth were observed.

  • PDF

Three-dimensional finite element analysis on intrusion of upper anterior teeth by three-piece base arch appliance according to alveolar bone loss (치조골 상실에 따른 three-piece base arch appliance를 이용한 상악전치부 intrusion에 대한 3차원 유한요소법적 연구)

  • Ha, Man-Hee;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.31 no.2 s.85
    • /
    • pp.209-223
    • /
    • 2001
  • At intrusion of upper anterior teeth in patient with periodontal defect, the use of three-piece base arch appliance for pure intrusion is required. To investigate the change of the center of resistance and of the distal traction force according to alveolar bone height at intrusion of upper anterior teeth using this appliance, three-dimensional finite element models of upper six anterior teeth, periodontal ligament and alveolar bone were constructed. At intrusion of upper anterior teeth by three-piece base arch appliance, the following conclusions were drawn to the locations of the center of resistance according to the number of teeth, the change of distal traction force for pure intrusion and the correlation to the change of vertical, horizontal location of the center of resistance according to alveolar bone loss. 1. When the axial inclination and alveolar bone height were normal, the anteroposterior locations of center of resistance of upper anterior teeth according to the number of teeth contained were as follows : 1) In 2 anterior teeth group, the center of located in the mesial 1/3 area of lateral incisor bracket. 2) In 4 anterior teeth group. the center of resistance was located in the distal 2/3 of the distance between the bracket of lateral incisor and canine. 3) In 6 anterior teeth group, the center of resistance was located in the central area of first premolar bracket .4) As the number of teeth contained in anterior teeth group increased, the center of resistance shifted to the distal side. 2. When the alveolar bone height was normal, the anteroposterior position of the point of application of the intrusive force was the same position or a bit forward position of the center of resistance at application of distal traction force for pure intrusion. 3. When intrusion force and the point of application of the intrusive force were fixed, the changes of distal traction force for pure intrusion according to alveolar bon loss were as follows :1) Regardless of the alveolar bone loss, the distal traction force of 2, 4 anterior teeth groups were lower than that of 6 anterior teeth group. 2) As the alveolar bone loss increased, the distal traction forces of each teeth group were increased. 4. The correlations of the vertical, horizontal locations of the center of resistance according to maxillary anterior teeth groups and the alveolar bone height were as follows : 1) In 2 anterior teeth group, the horizontal position displacement to the vortical position displacement of the center of resistance according to the alveolar bone loss was the largest. As the number of teeth increased, the horizontal position displacement to the vertical position displacement of the center of resistance according to the alveolar bone loss showed a tendency to decrease. 2) As the alveolar bone loss increased, the horizontal position displacement to the vertical position displacement of the center of resistance regardless of the number of teeth was increased.

  • PDF

Influence of Stratospheric Intrusion on Upper Tropospheric Ozone over the Tropical North Atlantic

  • Kim, So-Myoung;Na, Sun-Mi;Kim, Jae-Hwan
    • Journal of the Korean earth science society
    • /
    • v.29 no.5
    • /
    • pp.428-436
    • /
    • 2008
  • This study observed the upper tropospheric ozone enhancement in the northern Atlantic for the Aerosols99 campaign in January-February 1999. To find the origin of this air, we have analyzed the horizontal and vertical fields of Isentropic Potential Vorticity (IPV) and Relative Humidity (RH). The arch-shaped IPV is greater than 1.5 pvus indicating stratospheric air stretches equatorward. These arch-shaped regions are connected with regions of RH less than 20%. The vertical fields of IPV and RH show the folding layer penetrating into the upper troposphere. These features support the idea that the upper tropospheric ozone enhancement originated from the stratosphere. Additionally, we have investigated the climatological frequency of stratospheric intrusion over the tropical north Atlantic using IPV and RH. The total frequency between the equator and $30^{\circ}N$ over the tropical north Atlantic exhibits a maximum in northern winter. It suggests that the stratospheric intrusion plays an important role in enhancing ozone in the upper troposphere over the tropical north Atlantic in winter and early spring. Although the tropospheric ozone residual method assumed zonally invariant stratospheric ozone, stratospheric zonal ozone variance could be caused by stratospheric intrusions. This implies that stratospheric intrusion influences ozone variance over the Atlantic in boreal winter and spring, and the intrusion is a possible source for the tropical north Atlantic paradox.

Total intrusion and distalization of the maxillary arch to improve smile esthetics

  • Baek, Eui Seon;Hwang, Soonshin;Kim, Kyung-Ho;Chun, Chooryung J.
    • The korean journal of orthodontics
    • /
    • v.47 no.1
    • /
    • pp.59-73
    • /
    • 2017
  • This case report illustrates the successful treatment of a patient with skeletal Class II malocclusion and an unesthetic smile involving excessive gingival display and large buccal corridors. By applying dual buccal interradicular miniscrews, total intrusion of the maxillary dentition along with distalization was induced to improve both the occlusion and smile esthetics. In addition to the conventional cephalometric superimposition, three-dimensional superimposition was performed and evaluated to validate the treatment outcome.

Segmented Arch Technique 에 의한 최신교정치료법(II)

  • Park, Yeong-Cheol
    • The Journal of the Korean dental association
    • /
    • v.24 no.7 s.206
    • /
    • pp.593-603
    • /
    • 1986
  • Segmented Arch technique은 edgewise mechanics의 한 줄기로서, 미국 코네티컬 주립대학 교정과 과장인 Dr. Burstone에 의하여서 1950년대 이래로 꾸준히 개발되어온 생역학적인 개념(biomechanical concept)을 가장 효율적으로 치료에 적용하고자 함에 있다고 하겠다. 저자는 Segmented arch technique의 최근의 경향과 치료이론 및 술식을 다음의 순서로 4회에 걸쳐서 소개하고자 한다. 1. 전치의 Intrusion에 의한 과개교합의 치료법 -Deep Overbite Correction 2. Space closure - 수평방향의 치아이동방법 3. Root movement의 방법 - Torque mechanics 4. 구치를 Upright 시키는 방법 - Tip back mechanics.

  • PDF

Segmented Arch Technique에 의한 최신교정치료법(III)

  • Park, Yeong-Cheol
    • The Journal of the Korean dental association
    • /
    • v.24 no.8 s.207
    • /
    • pp.698-702
    • /
    • 1986
  • Segmented Arch technique 은 edgewise mechanics의 한 줄기로서, 미국 코네티컬 주립대학 교정과 과장인 Dr. Burstone에 의하여 1950년대 이래로 꾸준히 개발되어온 치료술식으로서 그 특징을 한마디로 요약하면 생역학적인 개념(biomechanical concept)을 가장 효율적으로 치료에 적용하고자 함에 있다고 하겠다. 저자는 Segmented arch technique의 최근의 경향과 치료이론 및 술식을 다음의 순서로 4회에 걸쳐서 소개하고자 한다. 1. 전치의 Intrusion에 의한 과개교합의 치료법 -Deep Overbite Correction 2. Space closure - 수평방향의 치아이동방법 3. 치근의 이동방법 - Root movement 4. 구치를 Upright 시키는 방법 - Tip back mechanics

  • PDF