DOI QR코드

DOI QR Code

REAL HYPERSURFACES IN THE COMPLEX HYPERBOLIC QUADRIC WITH CYCLIC PARALLEL STRUCTURE JACOBI OPERATOR

  • Jin Hong Kim (Department of Mathematics Education Chosun University) ;
  • Hyunjin Lee (Department of Mathematics Education Chosun University) ;
  • Young Jin Suh (Department of Mathematics & RIRCM Kyungpook National University)
  • 투고 : 2023.04.19
  • 심사 : 2023.06.29
  • 발행 : 2024.03.01

초록

Let M be a real hypersurface in the complex hyperbolic quadric Qm*, m ≥ 3. The Riemannian curvature tensor field R of M allows us to define a symmetric Jacobi operator with respect to the Reeb vector field ξ, which is called the structure Jacobi operator Rξ = R( · , ξ)ξ ∈ End(TM). On the other hand, in [20], Semmelmann showed that the cyclic parallelism is equivalent to the Killing property regarding any symmetric tensor. Motivated by his result above, in this paper we consider the cyclic parallelism of the structure Jacobi operator Rξ for a real hypersurface M in the complex hyperbolic quadric Qm*. Furthermore, we give a complete classification of Hopf real hypersurfaces in Qm* with such a property.

키워드

과제정보

The authors would like to express their hearty thanks to reviewer for his/her valuable suggestions and comments to develop this article.

참고문헌

  1. X. Chen, Real hypersurfaces of complex quadric in terms of star-Ricci tensor, Tokyo J. Math. 41 (2018), no. 2, 587-601. https://doi.org/10.3836/tjm/1502179254
  2. S. Helgason, Differential geometry, Lie groups, and symmetric spaces, corrected reprint of the 1978 original, Graduate Studies in Mathematics, 34, Amer. Math. Soc., Providence, RI, 2001. https://doi.org/10.1090/gsm/034
  3. W. Jelonek, Killing tensors and Einstein-Weyl geometry, Colloq. Math. 81 (1999), no. 1, 5-19. https://doi.org/10.4064/cm-81-1-5-19
  4. U.-H. Ki and H. Kurihara, Real hypersurfaces with cyclic-parallel structure Jacobi operators in a nonflat complex space form, Bull. Aust. Math. Soc. 81 (2010), no. 2, 260-273. https://doi.org/10.1017/S0004972709000860
  5. G. J. Kim and Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadric with parallel Ricci tensor, Results Math. 74 (2019), no. 1, Paper No. 33, 30 pp. https://doi.org/10.1007/s00025-019-0961-7
  6. S. Klein, Totally geodesic submanifolds of the complex quadric, Differential Geom. Appl. 26 (2008), no. 1, 79-96. https://doi.org/10.1016/j.difgeo.2007.11.004
  7. S. Klein and Y. J. Suh, Contact real hypersurfaces in the complex hyperbolic quadric, Ann. Mat. Pura Appl. (4) 198 (2019), no. 4, 1481-1494. https://doi.org/10.1007/s10231-019-00827-y
  8. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York, 1963.
  9. H. Lee and Y. J. Suh, Real hypersurfaces with recurrent normal Jacobi operator in the complex quadric, J. Geom. Phys. 123 (2018), 463-474. https://doi.org/10.1016/j.geomphys.2017.10.003
  10. H. Lee and Y. J. Suh, Commuting Jacobi operators on real hypersurfaces of type B in the complex quadric, Math. Phys. Anal. Geom. 23 (2020), no. 4, Paper No. 44, 21 pp. https://doi.org/10.1007/s11040-020-09370-2
  11. H. Lee and Y. J. Suh, Cyclic parallel strucure Jacobi operator for real hypersurfaces in the complex quadric, Tokyo J. Math. (in press). https://doi.org/10.3836/tjm/1502179392
  12. H. Lee, Y. J. Suh, and C. Woo, A classification of Ricci semi-symmetric real hypersurfaces in the complex quadric, J. Geom. Phys. 164 (2021), Paper No. 104177, 15 pp. https://doi.org/10.1016/j.geomphys.2021.104177
  13. H. Lee, Y. J. Suh, and C. Woo, Cyclic parallel structure Jacobi operator for real hypersurfaces in complex two-plane Grassmannians, Proc. Roy. Soc. Edinburgh Sect. A 152 (2022), no. 4, 939-964. https://doi.org/10.1017/prm.2021.42
  14. H. Lee, Y. J. Suh, and C. Woo, Generalized Killing structure Jacobi operator for real hypersurfaces in complex hyperbolic two-plane Grassmannians, J. Korean Math. Soc. 59 (2022), no. 2, 255-278. https://doi.org/10.4134/JKMS.j200614
  15. H. Lee, Y. J. Suh, and C. Woo, Ruled real hypersurfaces in the complex hyperbolic quadric, to appear in Demonstr. Math. (2023).
  16. J. D. P'erez, On the structure vector field of a real hypersurface in complex quadric, Open Math. 16 (2018), no. 1, 185-189. https://doi.org/10.1515/math-2018-0021
  17. J. D. P'erez, Commutativity of torsion and normal Jacobi operators on real hypersurfaces in the complex quadric, Publ. Math. Debrecen 95 (2019), no. 1-2, 157-168. https://doi.org/10.5486/pmd.2019.8424
  18. J. D. P'erez, Some real hypersurfaces in complex and complex hyperbolic quadrics, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 2, 1709-1718. https://doi.org/10.1007/s40840-019-00769-x
  19. H. Reckziegel, On the geometry of the complex quadric, in Geometry and topology of submanifolds, VIII (Brussels, 1995/Nordfjordeid, 1995), 302-315, World Sci. Publ., River Edge, NJ, 1996.
  20. U. Semmelmann, Conformal Killing forms on Riemannian manifolds, Math. Z. 245 (2003), no. 3, 503-527. https://doi.org/10.1007/s00209-003-0549-4
  21. Y. J. Suh, Real hypersurfaces in the complex quadric with parallel Ricci tensor, Adv. Math. 281 (2015), 886-905. https://doi.org/10.1016/j.aim.2015.05.012
  22. Y. J. Suh, Real hypersurfaces in the complex quadric with harmonic curvature, J. Math. Pures Appl. (9) 106 (2016), no. 3, 393-410. https://doi.org/10.1016/j.matpur.2016.02.015
  23. Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadrics with isometric Reeb flow, Commun. Contemp. Math. 20 (2018), no. 2, 1750031, 20 pp. https://doi.org/10.1142/S0219199717500316
  24. Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadric with parallel normal Jacobi operator, Mediterr. J. Math. 15 (2018), no. 4, Paper No. 159, 14 pp. https://doi.org/10.1007/s00009-018-1202-0
  25. Y. J. Suh, Real hypersurfaces in the complex quadric with Reeb parallel Ricci tensor, J. Geom. Anal. 29 (2019), no. 4, 3248-3269. https://doi.org/10.1007/s12220-018-00113-y
  26. Y. J. Suh and D. H. Hwang, Real hypersurfaces in the complex hyperbolic quadric with Reeb parallel shape operator, Ann. Mat. Pura Appl. (4) 196 (2017), no. 4, 1307-1326. https://doi.org/10.1007/s10231-016-0617-0
  27. Y. J. Suh and D. H. Hwang, Real hypersurfaces with structure Jacobi operator of Codazzi type in the complex hyperbolic quadric, Houston J. Math. 46 (2020), no. 1, 39-70.
  28. Y. J. Suh, J. D. P'erez, and C. Woo, Real hypersurfaces in the complex hyperbolic quadric with parallel structure Jacobi operator, Publ. Math. Debrecen 94 (2019), no. 1-2, 75-107. https://doi.org/10.5486/pmd.2019.8262
  29. J. Van der Veken and A. Wijffels, Lagrangian submanifolds of the complex hyperbolic quadric, Ann. Mat. Pura Appl. (4) 200 (2021), no. 5, 1871-1891. https://doi.org/10.1007/s10231-020-01063-5
  30. C. Woo, H. Lee, and Y. J. Suh, Generalized Killing Ricci tensor for real hypersurfaces in the complex hyperbolic quadric, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 115 (2021), no. 3, Paper No. 117, 31 pp. https://doi.org/10.1007/s13398-021-01055-x
  31. Z. Yao, B. Yin, and Z. J. Hu, Non-existence of conformally flat real hypersurfaces in both the complex quadric and the complex hyperbolic quadric, Canad. Math. Bull. 65 (2022), no. 1, 68-83. https://doi.org/10.4153/S0008439521000084