과제정보
The authors would like to express their hearty thanks to reviewer for his/her valuable suggestions and comments to develop this article.
참고문헌
- X. Chen, Real hypersurfaces of complex quadric in terms of star-Ricci tensor, Tokyo J. Math. 41 (2018), no. 2, 587-601. https://doi.org/10.3836/tjm/1502179254
- S. Helgason, Differential geometry, Lie groups, and symmetric spaces, corrected reprint of the 1978 original, Graduate Studies in Mathematics, 34, Amer. Math. Soc., Providence, RI, 2001. https://doi.org/10.1090/gsm/034
- W. Jelonek, Killing tensors and Einstein-Weyl geometry, Colloq. Math. 81 (1999), no. 1, 5-19. https://doi.org/10.4064/cm-81-1-5-19
- U.-H. Ki and H. Kurihara, Real hypersurfaces with cyclic-parallel structure Jacobi operators in a nonflat complex space form, Bull. Aust. Math. Soc. 81 (2010), no. 2, 260-273. https://doi.org/10.1017/S0004972709000860
- G. J. Kim and Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadric with parallel Ricci tensor, Results Math. 74 (2019), no. 1, Paper No. 33, 30 pp. https://doi.org/10.1007/s00025-019-0961-7
- S. Klein, Totally geodesic submanifolds of the complex quadric, Differential Geom. Appl. 26 (2008), no. 1, 79-96. https://doi.org/10.1016/j.difgeo.2007.11.004
- S. Klein and Y. J. Suh, Contact real hypersurfaces in the complex hyperbolic quadric, Ann. Mat. Pura Appl. (4) 198 (2019), no. 4, 1481-1494. https://doi.org/10.1007/s10231-019-00827-y
- S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York, 1963.
- H. Lee and Y. J. Suh, Real hypersurfaces with recurrent normal Jacobi operator in the complex quadric, J. Geom. Phys. 123 (2018), 463-474. https://doi.org/10.1016/j.geomphys.2017.10.003
- H. Lee and Y. J. Suh, Commuting Jacobi operators on real hypersurfaces of type B in the complex quadric, Math. Phys. Anal. Geom. 23 (2020), no. 4, Paper No. 44, 21 pp. https://doi.org/10.1007/s11040-020-09370-2
- H. Lee and Y. J. Suh, Cyclic parallel strucure Jacobi operator for real hypersurfaces in the complex quadric, Tokyo J. Math. (in press). https://doi.org/10.3836/tjm/1502179392
- H. Lee, Y. J. Suh, and C. Woo, A classification of Ricci semi-symmetric real hypersurfaces in the complex quadric, J. Geom. Phys. 164 (2021), Paper No. 104177, 15 pp. https://doi.org/10.1016/j.geomphys.2021.104177
- H. Lee, Y. J. Suh, and C. Woo, Cyclic parallel structure Jacobi operator for real hypersurfaces in complex two-plane Grassmannians, Proc. Roy. Soc. Edinburgh Sect. A 152 (2022), no. 4, 939-964. https://doi.org/10.1017/prm.2021.42
- H. Lee, Y. J. Suh, and C. Woo, Generalized Killing structure Jacobi operator for real hypersurfaces in complex hyperbolic two-plane Grassmannians, J. Korean Math. Soc. 59 (2022), no. 2, 255-278. https://doi.org/10.4134/JKMS.j200614
- H. Lee, Y. J. Suh, and C. Woo, Ruled real hypersurfaces in the complex hyperbolic quadric, to appear in Demonstr. Math. (2023).
- J. D. P'erez, On the structure vector field of a real hypersurface in complex quadric, Open Math. 16 (2018), no. 1, 185-189. https://doi.org/10.1515/math-2018-0021
- J. D. P'erez, Commutativity of torsion and normal Jacobi operators on real hypersurfaces in the complex quadric, Publ. Math. Debrecen 95 (2019), no. 1-2, 157-168. https://doi.org/10.5486/pmd.2019.8424
- J. D. P'erez, Some real hypersurfaces in complex and complex hyperbolic quadrics, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 2, 1709-1718. https://doi.org/10.1007/s40840-019-00769-x
- H. Reckziegel, On the geometry of the complex quadric, in Geometry and topology of submanifolds, VIII (Brussels, 1995/Nordfjordeid, 1995), 302-315, World Sci. Publ., River Edge, NJ, 1996.
- U. Semmelmann, Conformal Killing forms on Riemannian manifolds, Math. Z. 245 (2003), no. 3, 503-527. https://doi.org/10.1007/s00209-003-0549-4
- Y. J. Suh, Real hypersurfaces in the complex quadric with parallel Ricci tensor, Adv. Math. 281 (2015), 886-905. https://doi.org/10.1016/j.aim.2015.05.012
- Y. J. Suh, Real hypersurfaces in the complex quadric with harmonic curvature, J. Math. Pures Appl. (9) 106 (2016), no. 3, 393-410. https://doi.org/10.1016/j.matpur.2016.02.015
- Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadrics with isometric Reeb flow, Commun. Contemp. Math. 20 (2018), no. 2, 1750031, 20 pp. https://doi.org/10.1142/S0219199717500316
- Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadric with parallel normal Jacobi operator, Mediterr. J. Math. 15 (2018), no. 4, Paper No. 159, 14 pp. https://doi.org/10.1007/s00009-018-1202-0
- Y. J. Suh, Real hypersurfaces in the complex quadric with Reeb parallel Ricci tensor, J. Geom. Anal. 29 (2019), no. 4, 3248-3269. https://doi.org/10.1007/s12220-018-00113-y
- Y. J. Suh and D. H. Hwang, Real hypersurfaces in the complex hyperbolic quadric with Reeb parallel shape operator, Ann. Mat. Pura Appl. (4) 196 (2017), no. 4, 1307-1326. https://doi.org/10.1007/s10231-016-0617-0
- Y. J. Suh and D. H. Hwang, Real hypersurfaces with structure Jacobi operator of Codazzi type in the complex hyperbolic quadric, Houston J. Math. 46 (2020), no. 1, 39-70.
- Y. J. Suh, J. D. P'erez, and C. Woo, Real hypersurfaces in the complex hyperbolic quadric with parallel structure Jacobi operator, Publ. Math. Debrecen 94 (2019), no. 1-2, 75-107. https://doi.org/10.5486/pmd.2019.8262
- J. Van der Veken and A. Wijffels, Lagrangian submanifolds of the complex hyperbolic quadric, Ann. Mat. Pura Appl. (4) 200 (2021), no. 5, 1871-1891. https://doi.org/10.1007/s10231-020-01063-5
- C. Woo, H. Lee, and Y. J. Suh, Generalized Killing Ricci tensor for real hypersurfaces in the complex hyperbolic quadric, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 115 (2021), no. 3, Paper No. 117, 31 pp. https://doi.org/10.1007/s13398-021-01055-x
- Z. Yao, B. Yin, and Z. J. Hu, Non-existence of conformally flat real hypersurfaces in both the complex quadric and the complex hyperbolic quadric, Canad. Math. Bull. 65 (2022), no. 1, 68-83. https://doi.org/10.4153/S0008439521000084