DOI QR코드

DOI QR Code

Slipchip Device Development in Molecular Diagnostics

  • Qingtian Yin (Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering) ;
  • Huiwen Bai (Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania) ;
  • Ruijie Li (Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) ;
  • Youngung Seok (Department of Biotechnology and Bioengineering, Chonnam National University)
  • Received : 2024.01.23
  • Accepted : 2024.01.24
  • Published : 2024.02.27

Abstract

Slipchip offers advantages such as high-throughout, low cost, and simple operation, and therefore, it is one of the technologies with the greatest potential for high-throughput, single-cell, and single-molecule analyses. Slipchip devices have achieved remarkable advances over the past decades, with its simplified molecular diagnostics gaining particular attention, especially during the COVID-19 pandemic and in various infectious diseases scenarios. Medical testing based on nucleic acid amplification in the Slipchip has become a promising alternative simple and rapid diagnostic tool in field situations. Herein, we present a comprehensive review of Slipchip device advances in molecular diagnostics, highlighting its use in digital recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), and polymerase chain reaction (PCR). Slipchip technology allows users to conduct reliable droplet transfers with high-throughput potential for single-cell and molecule analyses. This review explores the device's versatility in miniaturized and rapid molecular diagnostics. A complete Slipchip device can be operated without special equipment or skilled handling, and provides high-throughput results in minimum settings. This review focuses on recent developments and Slipchip device challenges that need to be addressed for further advancements in microfluidics technology.

Keywords

References

  1. Y. Ghallab and W. Badawy, IEEE Circuits Syst. Mag., 4, 5 (2004). 
  2. M. Tang, G. Wang, S.-K. Kong and H.-P. Ho, Micromachines, 7, 26 (2016). 
  3. R.-J. Yang, H.-H. Hou, Y.-N. Wang and L.-M. Fu, Sens. Actuators, B, 224, 1 (2016).  https://doi.org/10.1016/j.snb.2015.10.053
  4. S. Burger, M. Schulz, F. Von Stetten, R. Zengerle and N. Paust, Lab Chip, 16, 261 (2016). 
  5. C. W. Shields Iv, C. D. Reyes and G. P. Lopez, Lab Chip, 15, 1230 (2015). 
  6. Y. Shen, Y. Yalikun and Y. Tanaka, Sens. Actuators, B, 282, 268 (2019). 
  7. X. Zhang and A. E. Oseyemi, Micromachines, 10, 798 (2019). 
  8. Z. Cai, J. Xiang, H. Chen and W. Wang, Sens. Actuators, B, 228, 251 (2016). 
  9. J. Chen, Z. Kang, G. Wang, J. F. C. Loo, S. K. Kong and H.-P. Ho, Lab Chip, 15, 2504 (2015). 
  10. O. Strohmeier, M. Keller, F. Schwemmer, S. Zehnle, D. Mark, F. von Stetten, R. Zengerle and N. Paust, Chem. Soc. Rev., 44, 6187 (2015). 
  11. Y. Ouyang, J. Li, C. Phaneuf, P. S. Riehl, C. Forest, M. Begley, D. M. Haverstick and J. P. Landers, Lab Chip, 16, 377 (2016). 
  12. Y. Ukita, Y. Takamura and Y. Utsumi, Sens. Actuators, B, 220, 180 (2015).  https://doi.org/10.1016/j.snb.2015.05.051
  13. V. Jankauskaite, P. Narmontas and A. Lazauskas, Coatings, 9, 36 (2019). 
  14. M. Madadelahi, L. F. Acosta-Soto, S. Hosseini, S. O. Martinez-Chapa and M. J. Madou, Lab Chip, 20, 1318 (2020). 
  15. Y. Zhang and H.-R. Jiang, Anal. Chim. Acta, 914, 7 (2016). 
  16. K. Kadimisetty, J. Song, A. M. Doto, Y. Hwang, J. Peng, M. G. Mauk, F. D. Bushman, R. Gross, J. N. Jarvis and C. Liu, Biosens. Bioelectron., 109, 156 (2018). 
  17. D. V. Zhukov, E. M. Khorosheva, T. Khazaei, W. Du, D. A. Selck, A. A. Shishkin and R. F. Ismagilov, Lab Chip, 19, 3200 (2019). 
  18. S. M. Prakadan, A. K. Shalek and D. A. Weitz, Nat. Rev. Genet., 18, 345 (2017). 
  19. A. A. Kolodziejczyk, J. K. Kim, V. Svensson, J. C. Marioni and S. A. Teichmann, Mol. Cell, 58, 610 (2015). 
  20. A.-E. Saliba, A. J. Westermann, S. A. Gorski and J. Vogel, Nucleic Acids Res., 42, 8845 (2014). 
  21. M. Yu, X. Chen, H. Qu, L. Ma, L. Xu, W. Lv, H. Wang, R. F. Ismagilov, M. Li and F. Shen, Anal. Chem., 91, 8751 (2019). 
  22. Q. Yi, D. Cai, M. Xiao, M. Nie, Q. Cui, J. Cheng, C. Li, J. Feng, G. Urban and Y.-C. Xu, Biosens. Bioelectron., 135, 200 (2019).  https://doi.org/10.1016/j.bios.2019.04.003
  23. D. Chen, S.-J. Liu and W. Du, J. Hazard. Mater., 366, 512 (2019). 
  24. L. Ma, S. S. Datta, M. A. Karymov, Q. Pan, S. Begolo and R. F. Ismagilov, Integr. Biol., 6, 796 (2014). 
  25. R. R. Pompano, C. E. Platt, M. A. Karymov and R. F. Ismagilov, Langmuir, 28, 1931 (2012). 
  26. M. S. Verma, M.-N. Tsaloglou, T. Sisley, D. Christodouleas, A. Chen, J. Milette and G. M. Whitesides, Biosens. Bioelectron., 99, 77 (2018). 
  27. F. Shen, E. K. Davydova, W. Du, J. E. Kreutz, O. Piepenburg and R. F. Ismagilov, Anal. Chem., 83, 3533 (2011). 
  28. D. A. Selck, M. A. Karymov, B. Sun and R. F. Ismagilov, Anal. Chem., 85, 11129 (2013). 
  29. F. Shen, W. Du, J. E. Kreutz, A. Fok and R. F. Ismagilov, Lab Chip, 10, 2666 (2010). 
  30. Y. Xia, Z. Liu, S. Yan, F. Yin, X. Feng and B.-F. Liu, Sens. Actuators, B, 228, 491 (2016).  https://doi.org/10.1016/j.snb.2016.01.074
  31. S. Begolo, F. Shen and R. F. Ismagilov, Lab Chip, 13, 4331 (2013).