DOI QR코드

DOI QR Code

Temperature-Dependent Mn Substitution Effect on LiNiO2

  • Seungjae Jeon (Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University) ;
  • Sk. Khaja Hussain (Nanosensor Research Institute, Hanyang University) ;
  • Jin Ho Bang (Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University)
  • Received : 2023.08.28
  • Accepted : 2023.10.05
  • Published : 2024.02.29

Abstract

Despite the important role of manganese (Mn) in cobalt-free, Ni-rich cathode materials, existing reports on the effects of Mn as a substitute for cobalt are not consistent. In this work, we analyzed the performance of cathodes comprised of Li(Ni1-xMnx)O2 (LNMO). Both beneficial and detrimental results occurred as a result of the Mn substitution. We found that a complex interplay of effects (Li/Ni mixing driven by magnetic frustration, grain growth suppression, and retarded lithium insertion/extraction kinetics) influenced the performance and was intimately related to calcination temperature. This indicates the importance of establishing an optimal reaction temperature for the development of high-performance LNMO.

Keywords

Acknowledgement

This research was supported by grants from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2022R1A2C2006654) and by the Ministry of Education (NRF-2018R1A6A1A03024231). It was also supported by Brain Pool Program funded by the Ministry of Science and ICT through the NRF (NRF-2020H1D3A1A02081147). We appreciate the financial support from NeonTech Co., Ltd.

References

  1. S.-T. Myung, F. Maglia, K.-J. Park, C. S. Yoon, P. Lamp, S.-J. Kim, and Y.-K. Sun, ACS Energy Lett., 2017, 2(1), 196-223. https://doi.org/10.1021/acsenergylett.6b00594
  2. R. Pan, E. Jo, Z. Cui, and A. Manthiram, Adv. Funct. Mater., 2023, 33(10), 2211461.
  3. M. Bianchini, M. Roca-Ayats, P. Hartmann, T. Brezesinski, and J. Janek, Angew. Chem. Int. Ed., 2019, 58(11), 10434-10458. https://doi.org/10.1002/anie.201812472
  4. G. T. Park, H. H. Sun, T.-C. Noh, F. Maglia, S.-J. Kim, P. Lamp, and Y.-K. Sun, Adv. Energy Mater., 2022, 12(48), 2202719.
  5. H. Li, M. Cormier, N. Zhang, J. Inglis, J. Li, and J. R. Dahn, J. Electrochem. Soc., 2019, 166(4), A429-A439. https://doi.org/10.1149/2.1381902jes
  6. Y. Kim, W. M. Seong, and A. Manthiram, Energy Storage Mater., 2021, 34, 250-259. https://doi.org/10.1016/j.ensm.2020.09.020
  7. H. Li, L. Wang, Y. Song, Y. Wu, H. Zhang, A. Du, and X. He, Small, 2023, 19(32), 2302208.
  8. T. Liu, L. Yu, J. Liu, J. Lu, X. Bi, A. Dai, M. Li, M. Li, Z. Hu, L. Ma, D. Luo, J. Zheng, T. Wu, Y. Ren, J. Wen, F. Pan, and K. Amine, Nat. Energy, 2021, 6, 277-286. https://doi.org/10.1038/s41560-021-00776-y
  9. Y.-K. Sun, D.-J. Lee, Y. J. Lee, Z. Chen, and S.-T. Myung, ACS Appl. Mater. Interfaces, 2013, 5(21), 11434-11440. https://doi.org/10.1021/am403684z
  10. L. Yu, H. Zhao, J. Sun, Q. Han, J. Zhu, and J. Lu, Adv. Funct. Mater., 2022, 32(40), 2204931.
  11. K. Ryu, M. A. Abbas, and J. H. Bang, ACS Energy Lett., 2022, 7(6), 2029-2031. https://doi.org/10.1021/acsenergylett.2c00804
  12. P. Kurzhals, F. Riewald, M. Bianchini, H. Sommer, H. A. Gasteiger, and J. Janek, J. Electrochem. Soc., 2021, 168, 110518.
  13. Z. Lu, X. Huang, H. Huang, L. Chen, and S. Joop, Solid State Ionics, 1999, 120(1-4), 103-107. https://doi.org/10.1016/S0167-2738(98)00137-4
  14. G. J. Lee, M. A. Abbas, and J. H. Bang, Bull. Korean Chem. Soc., 2021, 42(6), 934-937. https://doi.org/10.1002/bkcs.12282
  15. Z. Cui, Z. Guo, and A. Manthiram, Adv. Energy Mater., 2023, 13(12), 2203853.
  16. W. Li, S. Lee, and A. Manthiram, Adv. Mater., 2020, 32(33), 2002718.
  17. Y. Xiao, T. Liu, J. Liu, L. He, J. Chen, J. Zhang, P. Luo, H. Lu, R. Wang, W. Zhu, Z. Hu, G. Teng, C. Xin, J. Zheng, T. Liang, F. Wang, Y. Chen, Q. Huang, F. Pan, and H. Chen, Nano Energy, 2018, 49, 77-85. https://doi.org/10.1016/j.nanoen.2018.04.020
  18. J. Zheng, G. Teng, C. Xin, Z. Zhuo, J. Liu, Q. Li, Z. Hu, M. Xu, S. Yan, W. Yang, and F. Pan, J. Phys. Chem. Lett., 2017, 8(22), 5537-5542. https://doi.org/10.1021/acs.jpclett.7b02498
  19. G.-T. Park, D. R. Yoon, U.-H. Kim, B. Namkoong, J. Lee, M. M. Wang, A. C. Lee, X. W. Gu, W. C. Chueh, C. S. Yoon, and Y.-K. Sun, Energy Environ. Sci., 2021, 14, 6616-6626. https://doi.org/10.1039/D1EE02898G
  20. C.-C. Chang, J. Y. Kim, and P. N. Kumta, J. Electrochem. Soc., 2002, 149(9), A1114.