References
- Acosta-Alvear, D., Zhou, Y., Blais, A., Tsikitis, M., Lents, N. H., Arias, C., Lennon, C. J., Kluger, Y. and Dynlacht, B. D. (2007) XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol. Cell 27, 53-66. https://doi.org/10.1016/j.molcel.2007.06.011
- Behnke, J., Mann, M. J., Scruggs, F. L., Feige, M. J. and Hendershot, L. M. (2016) Members of the Hsp70 family recognize distinct types of sequences to execute ER quality control. Mol. Cell 63, 739-752. https://doi.org/10.1016/j.molcel.2016.07.012
- Bengesser, S. A., Reininghaus, E. Z., Lackner, N., Birner, A., Fellendorf, F. T., Platzer, M., Kainzbauer, N., Tropper, B., Hormanseder, C., Queissner, R., Kapfhammer, H. P., Wallner-Liebmann, S. J., Fuchs, R., Petek, E., Windpassinger, C., Schnalzenberger, M., Reininghaus, B., Evert, B. and Waha, A. (2018) Is the molecular clock ticking differently in bipolar disorder? Methylation analysis of the clock gene ARNTL. World J. Biol. Psychiatry 19, S21-S29. https://doi.org/10.1080/15622975.2016.1231421
- Bommiasamy, H., Back, S. H., Fagone, P., Lee, K., Meshinchi, S., Vink, E., Sriburi, R., Frank, M., Jackowski, S., Kaufman, R. J. and Brewer, J. W. (2009) ATF6alpha induces XBP1-independent expansion of the endoplasmic reticulum. J. Cell Sci. 122, 1626-1636. https://doi.org/10.1242/jcs.045625
- Bown, C., Wang, J. F., MacQueen, G. and Young, L. T. (2000) Increased temporal cortex ER stress proteins in depressed subjects who died by suicide. Neuropsychopharmacology 22, 327-332. https://doi.org/10.1016/S0893-133X(99)00091-3
- Buyukada, E., Bora, E. S., Altuntas, I. and Erbas, O. (2023) Endoplasmic reticulum stress: implications for psychiatric disorders. JEB Med. Sci. 4, 37-44.
- Chakrabarti, A., Chen, A. W. and Varner, J. D. (2011) A review of the mammalian unfolded protein response. Biotechnol. Bioeng. 108, 2777-2793. https://doi.org/10.1002/bit.23282
- Chevet, E., Hetz, C. and Samali, A. (2015) Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis. Cancer Discov. 5, 586-597. https://doi.org/10.1158/2159-8290.CD-14-1490
- Cho, Y. M., Jang, Y. S., Jang, Y. M., Chung, S. M., Kim, H. S., Lee, J. H., Jeong, S. W., Kim, I. K., Kim, J. J., Kim, K. S. and Kwon, O. J. (2009) Induction of unfolded protein response during neuronal induction of rat bone marrow stromal cells and mouse embryonic stem cells. Exp. Mol. Med. 41, 440-452. https://doi.org/10.3858/emm.2009.41.6.049
- Concha, N. O., Smallwood, A., Bonnette, W., Totoritis, R., Zhang, G., Federowicz, K., Yang, J., Qi, H., Chen, S., Campobasso, N., Choudhry, A. E., Shuster, L. E., Evans, K. A., Ralph, J., Sweitzer, S., Heerding, D. A., Buser, C. A., Su, D. S. and DeYoung, M. P. (2015) Long-range inhibitor-induced conformational regulation of human IRE1alpha endoribonuclease activity. Mol. Pharmacol. 88, 1011-1123. https://doi.org/10.1124/mol.115.100917
- Costa-Mattioli, M., Gobert, D., Stern, E., Gamache, K., Colina, R., Cuello, C., Sossin, W., Kaufman, R., Pelletier, J., Rosenblum, K., Krnjevic, K., Lacaille, J. C., Nader, K. and Sonenberg, N. (2007) eIF2alpha phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory. Cell 129, 195-206. https://doi.org/10.1016/j.cell.2007.01.050
- Delepine, M., Nicolino, M., Barrett, T., Golamaully, M., Lathrop, G. M. and Julier, C. (2000) EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat. Genet. 25, 406-409. https://doi.org/10.1038/78085
- Edvardson, S., Nicolae, C. M., Noh, G. J., Burton, J. E., Punzi, G., Shaag, A., Bischetsrieder, J., De Grassi, A., Pierri, C. L., Elpeleg, O. and Moldovan, G. L. (2019) Heterozygous RNF13 gain-of-function variants are associated with congenital microcephaly, epileptic encephalopathy, blindness, and failure to thrive. Am. J. Hum. Genet. 104, 179-185. https://doi.org/10.1016/j.ajhg.2018.11.018
- Freeman, O. J. and Mallucci, G. R. (2016) The UPR and synaptic dysfunction in neurodegeneration. Brain Res. 1648, 530-537. https://doi.org/10.1016/j.brainres.2016.03.029
- Gerakis, Y. and Hetz, C. (2018) Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer's disease. FEBS J. 285, 995-1011. https://doi.org/10.1111/febs.14332
- Godin, J. D., Creppe, C., Laguesse, S. and Nguyen, L. (2016) Emerging roles for the unfolded protein response in the developing nervous system. Trends Neurosci. 39, 394-404. https://doi.org/10.1016/j.tins.2016.04.002
- Grandjean, J. M. D. and Wiseman, R. L. (2020) Small molecule strategies to harness the unfolded protein response: where do we go from here? J. Biol. Chem. 295, 15692-15711. https://doi.org/10.1074/jbc.REV120.010218
- Halliday, M., Hughes, D. and Mallucci, G. R. (2017) Fine-tuning PERK signaling for neuroprotection. J. Neurochem. 142, 812-826. https://doi.org/10.1111/jnc.14112
- Halliday, M. and Mallucci, G. R. (2014) Targeting the unfolded protein response in neurodegeneration: a new approach to therapy. Neuropharmacology 76 Pt A, 169-174. https://doi.org/10.1016/j.neuropharm.2013.08.034
- Han, J., Back, S. H., Hur, J., Lin, Y. H., Gildersleeve, R., Shan, J., Yuan, C. L., Krokowski, D., Wang, S., Hatzoglou, M., Kilberg, M. S., Sartor, M. A. and Kaufman, R. J. (2013a) ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15, 481-490. https://doi.org/10.1038/ncb2738
- Han, J., Murthy, R., Wood, B., Song, B., Wang, S., Sun, B., Malhi, H. and Kaufman, R. J. (2013b) ER stress signalling through eIF2alpha and CHOP, but not IRE1alpha, attenuates adipogenesis in mice. Diabetologia 56, 911-924. https://doi.org/10.1007/s00125-012-2809-5
- Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H. and Ron, D. (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897-904. https://doi.org/10.1016/S1097-2765(00)80330-5
- Harding, H. P., Zhang, Y. and Ron, D. (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271-274. https://doi.org/10.1038/16729
- Harding, H. P., Zhang, Y., Zeng, H., Novoa, I., Lu, P. D., Calfon, M., Sadri, N., Yun, C., Popko, B., Paules, R., Stojdl, D. F., Bell, J. C., Hettmann, T., Leiden, J. M. and Ron, D. (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619-633. https://doi.org/10.1016/S1097-2765(03)00105-9
- Hassler, J. R., Scheuner, D. L., Wang, S., Han, J., Kodali, V. K., Li, P., Nguyen, J., George, J. S., Davis, C., Wu, S. P., Bai, Y., Sartor, M., Cavalcoli, J., Malhi, H., Baudouin, G., Zhang, Y., Yates, J. R., III, Itkin-Ansari, P., Volkmann, N. and Kaufman, R. J. (2015) The IRE1alpha/XBP1s pathway is essential for the glucose response and protection of beta cells. PLoS Biol. 13, e1002277.
- Hayashi, A., Kasahara, T., Iwamoto, K., Ishiwata, M., Kametani, M., Kakiuchi, C., Furuichi, T. and Kato, T. (2007) The role of brain-derived neurotrophic factor (BDNF)-induced XBP1 splicing during brain development. J. Biol. Chem. 282, 34525-34534. https://doi.org/10.1074/jbc.M704300200
- Hayashi, A., Kasahara, T., Kametani, M., Toyota, T., Yoshikawa, T. and Kato, T. (2009) Aberrant endoplasmic reticulum stress response in lymphoblastoid cells from patients with bipolar disorder. Int. J. Neuropsychopharmacol. 12, 33-43. https://doi.org/10.1017/S1461145708009358
- Hetz, C. and Saxena, S. (2017) ER stress and the unfolded protein response in neurodegeneration. Nat. Rev. Neurol. 13, 477-491. https://doi.org/10.1038/nrneurol.2017.99
- Hetz, C., Zhang, K. and Kaufman, R. J. (2020) Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21, 421-438. https://doi.org/10.1038/s41580-020-0250-z
- Hoglinger, G. U., Melhem, N. M., Dickson, D. W., Sleiman, P. M., Wang, L. S., Klei, L., Rademakers, R., de Silva, R., Litvan, I., Riley, D. E., van Swieten, J. C., Heutink, P., Wszolek, Z. K., Uitti, R. J., Vandrovcova, J., Hurtig, H. I., Gross, R. G., Maetzler, W., Goldwurm, S., Tolosa, E., Borroni, B., Pastor, P.; PSP Genetics Study Group; Cantwell, L. B., Han, M. R., Dillman, A., van der Brug, M. P., Gibbs, J. R., Cookson, M. R., Hernandez, D. G., Singleton, A. B., Farrer, M. J., Yu, C. E., Golbe, L. I., Revesz, T., Hardy, J., Lees, A. J., Devlin, B., Hakonarson, H., Muller, U. and Schellenberg, G. D. (2011) Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat. Genet. 43, 699-705. https://doi.org/10.1038/ng.859
- Hollien, J., Lin, J. H., Li, H., Stevens, N., Walter, P. and Weissman, J. S. (2009) Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J. Cell Biol. 186, 323-331. https://doi.org/10.1083/jcb.200903014
- Hollien, J. and Weissman, J. S. (2006) Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313, 104-107. https://doi.org/10.1126/science.1129631
- Jan, A. T., Rahman, S., Ahmad, K. and Minakshi, R. (2022) Editorial: unfolded protein response (UPR): an impending target for multiple neurological disorders. Front. Aging Neurosci. 14, 1014450.
- Jousse, C., Oyadomari, S., Novoa, I., Lu, P., Zhang, Y., Harding, H. P. and Ron, D. (2003) Inhibition of a constitutive translation initiation factor 2alpha phosphatase, CReP, promotes survival of stressed cells. J. Cell Biol. 163, 767-775. https://doi.org/10.1083/jcb.200308075
- Jung, J., Michalak, M. and Agellon, L. B. (2017) Endoplasmic reticulum malfunction in the nervous system. Front. Neurosci. 11, 220.
- Kawada, K., Iekumo, T., Saito, R., Kaneko, M., Mimori, S., Nomura, Y. and Okuma, Y. (2014) Aberrant neuronal differentiation and inhibition of dendrite outgrowth resulting from endoplasmic reticulum stress. J. Neurosci. Res. 92, 1122-1133. https://doi.org/10.1002/jnr.23389
- Kawada, K. and Mimori, S. (2018) Implication of endoplasmic reticulum stress in autism spectrum disorder. Neurochem. Res. 43, 147-152. https://doi.org/10.1007/s11064-017-2370-1
- Kawada, K., Mimori, S., Okuma, Y. and Nomura, Y. (2018) Involvement of endoplasmic reticulum stress and neurite outgrowth in the model mice of autism spectrum disorder. Neurochem. Int. 119, 115-119. https://doi.org/10.1016/j.neuint.2017.07.004
- Kim, P., Scott, M. R. and Meador-Woodruff, J. H. (2021) Dysregulation of the unfolded protein response (UPR) in the dorsolateral prefrontal cortex in elderly patients with schizophrenia. Mol. Psychiatry 26, 1321-1331. https://doi.org/10.1038/s41380-019-0537-7
- Kowalczyk, M., Kowalczyk, E., Kwiatkowski, P., Lopusiewicz, L., Talarowska, M. and Sienkiewicz, M. (2021) Cellular response to unfolded proteins in depression. Life (Basel) 11, 1376.
- Laguesse, S., Creppe, C., Nedialkova, D. D., Prevot, P. P., Borgs, L., Huysseune, S., Franco, B., Duysens, G., Krusy, N., Lee, G., Thelen, N., Thiry, M., Close, P., Chariot, A., Malgrange, B., Leidel, S. A., Godin, J. D. and Nguyen, L. (2015) A dynamic unfolded protein response contributes to the control of cortical neurogenesis. Dev. Cell 35, 553-567. https://doi.org/10.1016/j.devcel.2015.11.005
- Lai, E. S. K., Nakayama, H., Miyazaki, T., Nakazawa, T., Tabuchi, K., Hashimoto, K., Watanabe, M. and Kano, M. (2021) An autism-associated neuroligin-3 mutation affects developmental synapse elimination in the cerebellum. Front. Neural Circuits 15, 676891.
- Lee, A. S. (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem. Sci. 26, 504-510. https://doi.org/10.1016/S0968-0004(01)01908-9
- Lee, A. S., Delegeane, A. and Scharff, D. (1981) Highly conserved glucose-regulated protein in hamster and chicken cells: preliminary characterization of its cDNA clone. Proc. Natl. Acad. Sci. U. S. A. 78, 4922-4925. https://doi.org/10.1073/pnas.78.8.4922
- Lu, M., Lawrence, D. A., Marsters, S., Acosta-Alvear, D., Kimmig, P., Mendez, A. S., Paton, A. W., Paton, J. C., Walter, P. and Ashkenazi, A. (2014) Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science 345, 98-101. https://doi.org/10.1126/science.1254312
- Momoi, T., Fujita, E., Senoo, H. and Momoi, M. (2009) Genetic factors and epigenetic factors for autism: endoplasmic reticulum stress and impaired synaptic function. Cell Biol. Int. 34, 13-19.
- Muneer, A. and Shamsher Khan, R. M. (2019) Endoplasmic reticulum stress: implications for neuropsychiatric disorders. Chonnam Med. J. 55, 8-19. https://doi.org/10.4068/cmj.2019.55.1.8
- Nadarajah, B. and Parnavelas, J. G. (2002) Modes of neuronal migration in the developing cerebral cortex. Nat. Rev. Neurosci. 3, 423-432. https://doi.org/10.1038/nrn845
- Nemoto, N., Udagawa, T., Ohira, T., Jiang, L., Hirota, K., Wilkinson, C. R., Bahler, J., Jones, N., Ohta, K., Wek, R. C. and Asano, K. (2010) The roles of stress-activated Sty1 and Gcn2 kinases and of the protooncoprotein homologue Int6/eIF3e in responses to endogenous oxidative stress during histidine starvation. J. Mol. Biol. 404, 183-201. https://doi.org/10.1016/j.jmb.2010.09.016
- Nevell, L., Zhang, K., Aiello, A. E., Koenen, K., Galea, S., Soliven, R., Zhang, C., Wildman, D. E. and Uddin, M. (2014) Elevated systemic expression of ER stress related genes is associated with stress-related mental disorders in the Detroit Neighborhood Health Study. Psychoneuroendocrinology 43, 62-70. https://doi.org/10.1016/j.psyneuen.2014.01.013
- Novoa, I., Zeng, H., Harding, H. P. and Ron, D. (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J. Cell Biol. 153, 1011-1022. https://doi.org/10.1083/jcb.153.5.1011
- Ounallah-Saad, H., Sharma, V., Edry, E. and Rosenblum, K. (2014) Genetic or pharmacological reduction of PERK enhances cortical-dependent taste learning. J. Neurosci. 34, 14624-14632. https://doi.org/10.1523/JNEUROSCI.2117-14.2014
- Pfaffenseller, B., Wollenhaupt-Aguiar, B., Fries, G. R., Colpo, G. D., Burque, R. K., Bristot, G., Ferrari, P., Cereser, K. M., Rosa, A. R., Klamt, F. and Kapczinski, F. (2014) Impaired endoplasmic reticulum stress response in bipolar disorder: cellular evidence of illness progression. Int. J. Neuropsychopharmacol. 17, 1453-1463. https://doi.org/10.1017/S1461145714000443
- Rao, R. V., Peel, A., Logvinova, A., del Rio, G., Hermel, E., Yokota, T., Goldsmith, P. C., Ellerby, L. M., Ellerby, H. M. and Bredesen, D. E. (2002) Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett. 514, 122-128. https://doi.org/10.1016/S0014-5793(02)02289-5
- Read, A. and Schroder, M. (2021) The unfolded protein response: an overview. Biology (Basel) 10, 384.
- Reinhardt, S., Schuck, F., Grosgen, S., Riemenschneider, M., Hartmann, T., Postina, R., Grimm, M. and Endres, K. (2014) Unfolded protein response signaling by transcription factor XBP-1 regulates ADAM10 and is affected in Alzheimer's disease. FASEB J. 28, 978-997. https://doi.org/10.1096/fj.13-234864
- Remondelli, P. and Renna, M. (2017) The endoplasmic reticulum unfolded protein response in neurodegenerative disorders and its potential therapeutic significance. Front. Mol. Neurosci. 10, 187.
- Ron, D. and Walter, P. (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519-529. https://doi.org/10.1038/nrm2199
- Scheper, W. and Hoozemans, J. J. (2015) The unfolded protein response in neurodegenerative diseases: a neuropathological perspective. Acta Neuropathol. 130, 315-331. https://doi.org/10.1007/s00401-015-1462-8
- Sharma, V., Ounallah-Saad, H., Chakraborty, D., Hleihil, M., Sood, R., Barrera, I., Edry, E., Kolatt Chandran, S., Ben Tabou de Leon, S., Kaphzan, H. and Rosenblum, K. (2018) Local inhibition of PERK enhances memory and reverses age-related deterioration of cognitive and neuronal properties. J. Neurosci. 38, 648-658. https://doi.org/10.1523/JNEUROSCI.0628-17.2017
- Shim, J., Umemura, T., Nothstein, E. and Rongo, C. (2004) The unfolded protein response regulates glutamate receptor export from the endoplasmic reticulum. Mol. Biol. Cell 15, 4818-4828. https://doi.org/10.1091/mbc.e04-02-0108
- Shoulders, M. D., Ryno, L. M., Genereux, J. C., Moresco, J. J., Tu, P. G., Wu, C., Yates, J. R., 3rd, Su, A. I., Kelly, J. W. and Wiseman, R. L. (2013) Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep. 3, 1279-1292. https://doi.org/10.1016/j.celrep.2013.03.024
- Sidhom, E., O'Brien, J. T., Butcher, A. J., Smith, H. L., Mallucci, G. R. and Underwood, B. R. (2022) Targeting the unfolded protein response as a disease-modifying pathway in dementia. Int. J. Mol. Sci. 23, 2021.
- Smith, H. L. and Mallucci, G. R. (2016) The unfolded protein response: mechanisms and therapy of neurodegeneration. Brain 139, 2113-2121. https://doi.org/10.1093/brain/aww101
- Snapp, E. L. (2012) Unfolded protein responses with or without unfolded proteins? Cells 1, 926-950. https://doi.org/10.3390/cells1040926
- So, J., Warsh, J. J. and Li, P. P. (2007) Impaired endoplasmic reticulum stress response in B-lymphoblasts from patients with bipolar-I disorder. Biol. Psychiatry 62, 141-147. https://doi.org/10.1016/j.biopsych.2006.10.014
- Stutzbach, L. D., Xie, S. X., Naj, A. C., Albin, R., Gilman, S.; PSP Genetics Study Group; Lee, V. M., Trojanowski, J. Q., Devlin, B. and Schellenberg, G. D. (2013) The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer's disease. Acta Neuropathol. Commun. 1, 31.
- Taverna, E., Gotz, M. and Huttner, W. B. (2014) The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu. Rev. Cell Dev. Biol. 30, 465-502. https://doi.org/10.1146/annurev-cellbio-101011-155801
- Timberlake, M. A., 2nd and Dwivedi, Y. (2015) Altered expression of endoplasmic reticulum stress associated genes in hippocampus of learned helpless rats: relevance to depression pathophysiology. Front. Pharmacol. 6, 319.
- Trobiani, L., Favaloro, F. L., Di Castro, M. A., Di Mattia, M., Cariello, M., Miranda, E., Canterini, S., De Stefano, M. E., Comoletti, D., Limatola, C. and De Jaco, A. (2018) UPR activation specifically modulates glutamate neurotransmission in the cerebellum of a mouse model of autism. Neurobiol. Dis. 120, 139-150. https://doi.org/10.1016/j.nbd.2018.08.026
- Ulbrich, L., Favaloro, F. L., Trobiani, L., Marchetti, V., Patel, V., Pascucci, T., Comoletti, D., Marciniak, S. J. and De Jaco, A. (2016) Autism-associated R451C mutation in neuroligin3 leads to activation of the unfolded protein response in a PC12 Tet-On inducible system. Biochem. J. 473, 423-434. https://doi.org/10.1042/BJ20150274
- Upton, J. P., Wang, L., Han, D., Wang, E. S., Huskey, N. E., Lim, L., Truitt, M., McManus, M. T., Ruggero, D., Goga, A., Papa, F. R. and Oakes, S. A. (2012) IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 338, 818-822. https://doi.org/10.1126/science.1226191
- Urra, H., Henriquez, D. R., Canovas, J., Villarroel-Campos, D., Carreras-Sureda, A., Pulgar, E., Molina, E., Hazari, Y. M., Limia, C. M., Alvarez-Rojas, S., Figueroa, R., Vidal, R. L., Rodriguez, D. A., Rivera, C. A., Court, F. A., Couve, A., Qi, L., Chevet, E., Akai, R., Iwawaki, T., Concha, M. L., Glavic, A., Gonzalez-Billault, C. and Hetz, C. (2018) IRE1alpha governs cytoskeleton remodelling and cell migration through a direct interaction with filamin A. Nat. Cell Biol. 20, 942-953.
- van Ziel, A. M. and Scheper, W. (2020) The UPR in neurodegenerative disease: not just an inside job. Biomolecules 10, 1090.
- Vandenberghe, W., Nicoll, R. A. and Bredt, D. S. (2005) Interaction with the unfolded protein response reveals a role for stargazin in biosynthetic ampa receptor transport. J. Neurosci. 25, 1095-1102. https://doi.org/10.1523/JNEUROSCI.3568-04.2005
- Vasquez, G. E., Medinas, D. B., Urra, H. and Hetz, C. (2022) Emerging roles of endoplasmic reticulum proteostasis in brain development. Cells Dev. 170, 203781.
- Vattem, K. M. and Wek, R. C. (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 101, 11269-11274. https://doi.org/10.1073/pnas.0400541101
- Vidal, R. L. and Hetz, C. (2012) Crosstalk between the UPR and autophagy pathway contributes to handling cellular stress in neurodegenerative disease. Autophagy 8, 970-972. https://doi.org/10.4161/auto.20139
- Wang, J. M., Qiu, Y., Yang, Z. Q., Li, L. and Zhang, K. (2017) Inositol-requiring enzyme 1 facilitates diabetic wound healing through modulating microRNAs. Diabetes 66, 177-192. https://doi.org/10.2337/db16-0052
- Wang, M. and Kaufman, R. J. (2014) The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer 14, 581-597. https://doi.org/10.1038/nrc3800
- Wang, S. and Kaufman, R. J. (2012) The impact of the unfolded protein response on human disease. J. Cell Biol. 197, 857-867. https://doi.org/10.1083/jcb.201110131
- Xue, X., Wu, X., Liu, L., Liu, L. and Zhu, F. (2023) ERVW-1 activates ATF6-mediated unfolded protein response by decreasing GANAB in recent-onset schizophrenia. Viruses 15, 1298.
- Yang, J., Liu, H., Li, L., Liu, H., Shi, W., Yuan, X. and Wu, L. (2016) Structural insights into IRE1 functions in the unfolded protein response. Curr. Med. Chem. 23, 4706-4716. https://doi.org/10.2174/0929867323666160927142349
- Yoshino, Y. and Dwivedi, Y. (2020) Elevated expression of unfolded protein response genes in the prefrontal cortex of depressed subjects: effect of suicide. J. Affect. Disord. 262, 229-236. https://doi.org/10.1016/j.jad.2019.11.001
- Zhang, L. H. and Zhang, X. (2010) Roles of GRP78 in physiology and cancer. J. Cell. Biochem. 110, 1299-305. https://doi.org/10.1002/jcb.22679
- Zhang, Y., Liu, R., Ni, M., Gill, P. and Lee, A. S. (2010) Cell surface relocalization of the endoplasmic reticulum chaperone and unfolded protein response regulator GRP78/BiP. J. Biol. Chem. 285, 15065-15075. https://doi.org/10.1074/jbc.M109.087445
- Zhao, F., Li, B., Yang, W., Ge, T. and Cui, R. (2022) Brain-immune interaction mechanisms: implications for cognitive dysfunction in psychiatric disorders. Cell Prolif. 55, e13295.
- Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R. T., Remotti, H., Stevens, J. L. and Ron, D. (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12, 982-995. https://doi.org/10.1101/gad.12.7.982