DOI QR코드

DOI QR Code

AMPK Alchemy: Therapeutic Potentials in Allergy, Aging, and Cancer

  • Ram Hari Pokhrel (College of Pharmacy, Yeungnam University) ;
  • Suman Acharya (College of Pharmacy, Yeungnam University) ;
  • Sunil Mishra (College of Pharmacy, Yeungnam University) ;
  • Ye Gu (College of Pharmacy, Yeungnam University) ;
  • Umar Manzoor (Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University) ;
  • Jeon-Kyung Kim (School of Pharmacy and Institute of New Drug Development, Jeonbuk National University) ;
  • Youngjun Park (Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University) ;
  • Jae-Hoon Chang (College of Pharmacy, Yeungnam University)
  • Received : 2023.12.18
  • Accepted : 2024.01.18
  • Published : 2024.03.01

Abstract

All cells are equipped with intricate signaling networks to meet the energy demands and respond to the nutrient availability in the body. AMP-activated protein kinase (AMPK) is among the most potent regulators of cellular energy balance. Under ATP -deprived conditions, AMPK phosphorylates substrates and affects various biological processes, such as lipid/glucose metabolism and protein synthesis. These actions further affect the cell growth, death, and functions, altering the cellular outcomes in energy-restricted environments. AMPK plays vital roles in maintaining good health. AMPK dysfunction is observed in various chronic diseases, making it a promising target for preventing and alleviating such diseases. Herein, we highlight the different AMPK functions, especially in allergy, aging, and cancer, to facilitate the development of new therapeutic approaches in the future.

Keywords

Acknowledgement

This study was supported by the Yeungnam University Research Grant (grant number 223A380004).

References

  1. Arcaro, A. and Guerreiro, A. S. (2007) The phosphoinositide 3-kinase pathway in human cancer: genetic alterations and therapeutic implications. Curr. Genomics 8, 271-306. https://doi.org/10.2174/138920207782446160
  2. Awwad, O., Coperchini, F., Pignatti, P., Denegri, M., Massara, S., Croce, L., Di Buduo, C. A., Abbonante, V., Balduini, A., Chiovato, L. and Rotondi, M. (2018) The AMPK-activator AICAR in thyroid cancer: effects on CXCL8 secretion and on CXCL8-induced neoplastic cell migration. J. Endocrinol. Invest. 41, 1275-1282. https://doi.org/10.1007/s40618-018-0862-8
  3. Beg, Z. H., Allmann, D. W. and Gibson, D. M. (1973) Modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP and with protein fractions of rat liver cytosol. Biochem. Biophys. Res. Commun. 54, 1362-1369. https://doi.org/10.1016/0006-291X(73)91137-6
  4. Blagih, J., Coulombe, F., Vincent, E. E., Dupuy, F., Galicia-Vazquez, G., Yurchenko, E., Raissi, T. C., van der Windt, G. J., Viollet, B. and Pearce, E. L. (2015) The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42, 41-54. https://doi.org/10.1016/j.immuni.2014.12.030
  5. Cairns, R. A. and Mak, T. W. (2017) Fire and water: tumor cell adaptation to metabolic conditions. Exp. Cell Res. 356, 204-208. https://doi.org/10.1016/j.yexcr.2017.04.029
  6. Carling, D., Mayer, F. V., Sanders, M. J. and Gamblin, S. J. (2011) AMP-activated protein kinase: nature's energy sensor. Nat. Chem. Biol. 7, 512-518. https://doi.org/10.1038/nchembio.610
  7. Carlson, C. A. and Kim, K.-H. (1973) Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J. Biol. Chem. 248, 378-380. https://doi.org/10.1016/S0021-9258(19)44486-4
  8. Cerezo, M., Tichet, M., Abbe, P., Ohanna, M., Lehraiki, A., Rouaud, F., Allegra, M., Giacchero, D., Bahadoran, P. and Bertolotto, C. (2013) Metformin blocks melanoma invasion and metastasis development in AMPK/p53-dependent manner. Mol. Cancer Ther. 12, 1605-1615. https://doi.org/10.1158/1535-7163.MCT-12-1226-T
  9. Cha, J. H., Yang, W. H., Xia, W., Wei, Y., Chan, L. C., Lim, S. O., Li, C. W., Kim, T., Chang, S. S., Lee, H. H., Hsu, J. L., Wang, H. L., Kuo, C. W., Chang, W. C., Hadad, S., Purdie, C. A., McCoy, A. M., Cai, S., Tu, Y., Litton, J. K., Mittendorf, E. A., Moulder, S. L., Symmans, W. F., Thompson, A. M., Piwnica-Worms, H., Chen, C. H., Khoo, K. H. and Hung, M. C. (2018) Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol. Cell 71, 606-620.e7. https://doi.org/10.1016/j.molcel.2018.07.030
  10. Chang, W. H. and Lai, A. G. (2020) An integrative pan-cancer investigation reveals common genetic and transcriptional alterations of AMPK pathway genes as important predictors of clinical outcomes across major cancer types. BMC Cancer 20, 773.
  11. Chen, C., Song, W., Kao, J. Y., Zheng, Q. and Chen, J.-J. (2004) Expression of Fas ligand is not a main mechanism used by tumors to counteract antitumor immunity. Front. Biosci. 9, 448-456. https://doi.org/10.2741/1252
  12. Chiacchiera, F. and Simone, C. (2010) The AMPK-FoxO3A axis as a target for cancer treatment. Cell Cycle 9, 1091-1096. https://doi.org/10.4161/cc.9.6.11035
  13. Chiang, P.-C., Lin, S.-C., Pan, S.-L., Kuo, C.-H., Tsai, I.-L., Kuo, M.-T., Wen, W.-C., Chen, P. and Guh, J.-H. (2010) Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: a crucial role of AMPK and mTOR pathways. Biochem. Pharmacol. 79, 162-171. https://doi.org/10.1016/j.bcp.2009.08.022
  14. Chuang, H.-C., Chou, C.-C., Kulp, S. K. and Chen, C.-S. (2014) AMPK as a potential anticancer target - friend or foe? Curr. Pharm. Des. 20, 2607-2618. https://doi.org/10.2174/13816128113199990485
  15. Daskalopoulos, E. P., Dufeys, C., Beauloye, C., Bertrand, L. and Horman, S. (2016) AMPK in cardiovascular diseases. Exp. Suppl. 107, 179-201. https://doi.org/10.1007/978-3-319-43589-3_8
  16. Dibble, C. C. and Cantley, L. C. (2015) Regulation of mTORC1 by PI3K signaling. Trends Cell Biol. 25, 545-555. https://doi.org/10.1016/j.tcb.2015.06.002
  17. Domise, M. and Vingtdeux, V. (2016) AMPK in neurodegenerative diseases. Exp. Suppl. 107, 153-177.
  18. Faubert, B., Boily, G., Izreig, S., Griss, T., Samborska, B., Dong, Z., Dupuy, F., Chambers, C., Fuerth, B. J., Viollet, B., Mamer, O. A., Avizonis, D., DeBerardinis, R. J., Siegel, P. M. and Jones, R. G. (2013) AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 17, 113-124. https://doi.org/10.1016/j.cmet.2012.12.001
  19. Fu, Z. and Tindall, D. (2008) FOXOs, cancer and regulation of apoptosis. Oncogene 27, 2312-2319. https://doi.org/10.1038/onc.2008.24
  20. Gao, H., Wu, G., Spencer, T. E., Johnson, G. A. and Bazer, F. W. (2009) Select nutrients in the ovine uterine lumen. IV. Expression of neutral and acidic amino acid transporters in ovine uteri and peri-implantation conceptuses. Biol. Reprod. 80, 1196-1208. https://doi.org/10.1095/biolreprod.108.075440
  21. Gao, M., Kong, Q., Hua, H., Yin, Y., Wang, J., Luo, T. and Jiang, Y. (2016) AMPK-mediated up-regulation of mTORC2 and MCL-1 compromises the anti-cancer effects of aspirin. Oncotarget 7, 16349.
  22. Gao, Y., Chen, D. L., Zhou, M., Zheng, Z. S., He, M. F., Huang, S., Liao, X. Z. and Zhang, J. X. (2020) Cordycepin enhances the chemosensitivity of esophageal cancer cells to cisplatin by inducing the activation of AMPK and suppressing the AKT signaling pathway. Cell Death Dis. 11, 866.
  23. Ge, Y., Zhou, M., Chen, C., Wu, X. and Wang, X. (2022) Role of AMPK mediated pathways in autophagy and aging. Biochimie 195, 100-113. https://doi.org/10.1016/j.biochi.2021.11.008
  24. Gerriets, V. A. and Rathmell, J. C. (2012) Metabolic pathways in T cell fate and function. Trends Immunol. 33, 168-173. https://doi.org/10.1016/j.it.2012.01.010
  25. Greer, E. L., Dowlatshahi, D., Banko, M. R., Villen, J., Hoang, K., Blanchard, D., Gygi, S. P. and Brunet, A. (2007a) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr. Biol. 17, 1646-1656. https://doi.org/10.1016/j.cub.2007.08.047
  26. Greer, E. L., Oskoui, P. R., Banko, M. R., Maniar, J. M., Gygi, M. P., Gygi, S. P. and Brunet, A. (2007b) The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J. Biol. Chem. 282, 30107-30119. https://doi.org/10.1074/jbc.M705325200
  27. Guertin, D. A. and Sabatini, D. M. (2007) Defining the role of mTOR in cancer. Cancer Cell 12, 9-22. https://doi.org/10.1016/j.ccr.2007.05.008
  28. Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A., Vasquez, D. S., Turk, B. E. and Shaw, R. J. (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214-226. https://doi.org/10.1016/j.molcel.2008.03.003
  29. Hahn-Windgassen, A., Nogueira, V., Chen, C.-C., Skeen, J. E., Sonenberg, N. and Hay, N. (2005) Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J. Biol. Chem. 280, 32081-32089. https://doi.org/10.1074/jbc.M502876200
  30. Hardie, D. G. (2011) Adenosine monophosphate-activated protein kinase: a central regulator of metabolism with roles in diabetes, cancer, and viral infection. Cold Spring Harb. Symp. Quant. Biol. 76, 155-164. https://doi.org/10.1101/sqb.2011.76.010819
  31. Hardie, D. G. (2013) AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Diabetes 62, 2164-2172. https://doi.org/10.2337/db13-0368
  32. Hardie, D. G., Ross, F. A. and Hawley, S. A. (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251-262. https://doi.org/10.1038/nrm3311
  33. He, L., Sabet, A., Djedjos, S., Miller, R., Sun, X., Hussain, M. A., Radovick, S. and Wondisford, F. E. (2009) Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137, 635-646. https://doi.org/10.1016/j.cell.2009.03.016
  34. He, N., Fan, W., Henriquez, B., Yu, R. T., Atkins, A. R., Liddle, C., Zheng, Y., Downes, M. and Evans, R. M. (2017) Metabolic control of regulatory T cell (Treg) survival and function by Lkb1. Proc. Natl. Acad. Sci. U. S. A. 114, 12542-12547. https://doi.org/10.1073/pnas.1715363114
  35. Inoki, K., Zhu, T. and Guan, K. L. (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590. https://doi.org/10.1016/S0092-8674(03)00929-2
  36. Jagger, A., Shimojima, Y., Goronzy, J. J. and Weyand, C. M. (2014) Regulatory T cells and the immune aging process: a mini-review. Gerontology 60, 130-137. https://doi.org/10.1159/000355303
  37. Jeon, H., Huynh, D. T. N., Baek, N., Nguyen, T. L. L. and Heo, K. S. (2021) Ginsenoside-Rg2 affects cell growth via regulating ROS-mediated AMPK activation and cell cycle in MCF-7 cells. Phytomedicine 85, 153549.
  38. Jeon, S. M. and Hay, N. (2015) The double-edged sword of AMPK signaling in cancer and its therapeutic implications. Arch. Pharm. Res. 38, 346-357. https://doi.org/10.1007/s12272-015-0549-z
  39. Jones, R. G., Plas, D. R., Kubek, S., Buzzai, M., Mu, J., Xu, Y., Birnbaum, M. J. and Thompson, C. B. (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18, 283-293. https://doi.org/10.1016/j.molcel.2005.03.027
  40. Kang, J. I., Hong, J. Y., Lee, H. J., Bae, S. Y., Jung, C., Park, H. J. and Lee, S. K. (2015) Anti-tumor activity of yuanhuacine by regulating AMPK/mTOR signaling pathway and actin cytoskeleton organization in non-small cell lung cancer cells. PLoS One 10, e0144368.
  41. Kang, M. R., Park, S.-K., Lee, C. W., Cho, I. J., Jo, Y. N., Yang, J. W., Kim, J.-A., Yun, J., Lee, K. H. and Kwon, H. J. (2012) Widdrol induces apoptosis via activation of AMP-activated protein kinase in colon cancer cells. Oncol. Rep. 27, 1407-1412.
  42. Kang, S., Kim, J. E., Song, N. R., Jung, S. K., Lee, M. H., Park, J. S., Yeom, M. H., Bode, A. M., Dong, Z. and Lee, K. W. (2014) The ginsenoside 20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol induces autophagy and apoptosis in human melanoma via AMPK/JNK phosphorylation. PLoS One 9, e104305.
  43. Kay, A. B. (2001) Allergy and allergic diseases. N. Engl. J. Med. 344, 30-37. https://doi.org/10.1056/NEJM200101043440106
  44. Kazyken, D., Lentz, S. and Fingar, D. (2021) Alkaline intracellular pH (pHi) activates AMPK-mTORC2 signaling to promote cell survival during growth factor limitation. J. Biol. Chem. 297, 101100.
  45. Kazyken, D., Magnuson, B., Bodur, C., Acosta-Jaquez, H. A., Zhang, D., Tong, X., Barnes, T. M., Steinl, G. K., Patterson, N. E., Altheim, C. H., Sharma, N., Inoki, K., Cartee, G. D., Bridges, D., Yin, L., Riddle, S. M. and Fingar, D. C. (2019) AMPK directly activates mTORC2 to promote cell survival during acute energetic stress. Sci. Signal. 12, eaav3249.
  46. Keerthana, C. K., Rayginia, T. P., Shifana, S. C., Anto, N. P., Kalimuthu, K., Isakov, N. and Anto, R. J. (2023) The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front. Immunol. 14, 1114582.
  47. Kempkes, R. W. M., Joosten, I., Koenen, H. and He, X. (2019) Metabolic pathways involved in regulatory T cell functionality. Front. Immunol. 10, 2839.
  48. Kim, H.-J., Kim, S.-K., Kim, B.-S., Lee, S.-H., Park, Y.-S., Park, B.-K., Kim, S.-J., Kim, J., Choi, C. and Kim, J.-S. (2010) Apoptotic effect of quercetin on HT-29 colon cancer cells via the AMPK signaling pathway. J. Agric. Food Chem. 58, 8643-8650. https://doi.org/10.1021/jf101510z
  49. Kim, H.-S., Kim, M.-J., Kim, E. J., Yang, Y., Lee, M.-S. and Lim, J.-S. (2012) Berberine-induced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX-2 protein expression. Biochem. Pharmacol. 83, 385-394. https://doi.org/10.1016/j.bcp.2011.11.008
  50. Kim, K.-y., Baek, A., Hwang, J.-E., Choi, Y. A., Jeong, J., Lee, M.-S., Cho, D. H., Lim, J.-S., Kim, K. I. and Yang, Y. (2009) Adiponectin-activated AMPK stimulates dephosphorylation of AKT through protein phosphatase 2A activation. Cancer Res. 69, 4018-4026. https://doi.org/10.1158/0008-5472.CAN-08-2641
  51. Kishton, R. J., Barnes, C. E., Nichols, A. G., Cohen, S., Gerriets, V. A., Siska, P. J., Macintyre, A. N., Goraksha-Hicks, P., de Cubas, A. A., Liu, T., Warmoes, M. O., Abel, E. D., Yeoh, A. E., Gershon, T. R., Rathmell, W. K., Richards, K. L., Locasale, J. W. and Rathmell, J. C. (2016) AMPK is essential to balance glycolysis and mitochondrial metabolism to control T-ALL cell stress and survival. Cell Metab. 23, 649-662. https://doi.org/10.1016/j.cmet.2016.03.008
  52. Konieczny, P., Adamus, T., Sulkowski, M., Skrzypek, K. and Majka, M. (2023) Impact of AMPK on cervical carcinoma progression and metastasis. Cell Death Dis. 14, 43.
  53. Koppenol, W. H. and Bounds, P. L. (2009) The Warburg effect and metabolic efficiency: re-crunching the numbers. Science 324, 1029-1033. https://doi.org/10.1126/science.1160809
  54. Kovacic, S., Soltys, C.-L. M., Barr, A. J., Shiojima, I., Walsh, K. and Dyck, J. R. (2003) Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart. J. Biol. Chem. 278, 39422-39427. https://doi.org/10.1074/jbc.M305371200
  55. Laplante, M. and Sabatini, D. M. (2012) mTOR signaling in growth control and disease. Cell 149, 274-293. https://doi.org/10.1016/j.cell.2012.03.017
  56. Lee, C.-W., Wong, L. L.-Y., Tse, E. Y.-T., Liu, H.-F., Leong, V. Y.-L., Lee, J. M.-F., Hardie, D. G., Ng, I. O.-L. and Ching, Y.-P. (2012) AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. Cancer Res. 72, 4394-4404. https://doi.org/10.1158/0008-5472.CAN-12-0429
  57. Lee, E. J., Kim, T. J., Kim, D. S., Choi, C. H., Lee, J. W., Lee, J. H., Bae, D. S. and Kim, B. G. (2010) p53 alteration independently predicts poor outcomes in patients with endometrial cancer: a clinicopathologic study of 131 cases and literature review. Gynecol. Oncol. 116, 533-538. https://doi.org/10.1016/j.ygyno.2009.11.018
  58. Lee, K.-H., Hsu, E.-C., Guh, J.-H., Yang, H.-C., Wang, D., Kulp, S. K., Shapiro, C. L. and Chen, C.-S. (2011) Targeting energy metabolic and oncogenic signaling pathways in triple-negative breast cancer by a novel adenosine monophosphate-activated protein kinase (AMPK) activator. J. Biol. Chem. 286, 39247-39258. https://doi.org/10.1074/jbc.M111.264598
  59. Lee, Y. K., Park, S. Y., Kim, Y. M. and Park, O. J. (2009) Regulatory effect of the AMPK-COX-2 signaling pathway in curcumin-induced apoptosis in HT-29 colon cancer cells. Ann. N. Y. Acad. Sci. 1171, 489-494. https://doi.org/10.1111/j.1749-6632.2009.04699.x
  60. Li, W., Saud, S. M., Young, M. R., Chen, G. and Hua, B. (2015) Targeting AMPK for cancer prevention and treatment. Oncotarget 6, 7365-7378. https://doi.org/10.18632/oncotarget.3629
  61. Liberti, M. V. and Locasale, J. W. (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41, 211-218. https://doi.org/10.1016/j.tibs.2015.12.001
  62. Liu, Y., Ao, X., Ding, W., Ponnusamy, M., Wu, W., Hao, X., Yu, W., Wang, Y., Li, P. and Wang, J. (2018) Critical role of FOXO3a in carcinogenesis. Mol. Cancer 17, 104.
  63. Luo, L., Huang, W., Tao, R., Hu, N., Xiao, Z.-X. and Luo, Z. (2013) ATM and LKB1 dependent activation of AMPK sensitizes cancer cells to etoposide-induced apoptosis. Cancer Lett. 328, 114-119. https://doi.org/10.1016/j.canlet.2012.08.034
  64. MacIver, N. J., Blagih, J., Saucillo, D. C., Tonelli, L., Griss, T., Rathmell, J. C. and Jones, R. G. (2011) The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J. Immunol. 187, 4187-4198. https://doi.org/10.4049/jimmunol.1100367
  65. Marinangeli, C., Didier, S. and Vingtdeux, V. (2016) AMPK in neurodegenerative diseases: implications and therapeutic perspectives. Curr. Drug Targets 17, 890-907. https://doi.org/10.2174/1389450117666160201105645
  66. Maxwell, P. H., Wiesener, M. S., Chang, G.-W., Clifford, S. C., Vaux, E. C., Cockman, M. E., Wykoff, C. C., Pugh, C. W., Maher, E. R. and Ratcliffe, P. J. (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275. https://doi.org/10.1038/20459
  67. Maynard, M. and Ohh, M. (2007) The role of hypoxia-inducible factors in cancer. Cell. Mol. Life Sci. 64, 2170-2180. https://doi.org/10.1007/s00018-007-7082-2
  68. Merrill, G. F., Kurth, E. J., Hardie, D. G. and Winder, W. W. (1997) AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am. J. Physiol. 273, E1107-E1112. https://doi.org/10.1152/ajpendo.1997.273.6.E1107
  69. Michalek, R. D., Gerriets, V. A., Jacobs, S. R., Macintyre, A. N., MacIver, N. J., Mason, E. F., Sullivan, S. A., Nichols, A. G. and Rathmell, J. C. (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299-3303. https://doi.org/10.4049/jimmunol.1003613
  70. Nagalingam, A., Arbiser, J. L., Bonner, M. Y., Saxena, N. K. and Sharma, D. (2012) Honokiol activates AMP-activated protein kinase in breast cancer cells via an LKB1-dependent pathway and inhibits breast carcinogenesis. Breast Cancer Res. 14, R35.
  71. O'Brien, A. J., Villani, L. A., Broadfield, L. A., Houde, V. P., Galic, S., Blandino, G., Kemp, B. E., Tsakiridis, T., Muti, P. and Steinberg, G. R. (2015) Salicylate activates AMPK and synergizes with metformin to reduce the survival of prostate and lung cancer cells ex vivo through inhibition of de novo lipogenesis. Biochem. J. 469, 177-187. https://doi.org/10.1042/BJ20150122
  72. Okoshi, R., Ozaki, T., Yamamoto, H., Ando, K., Koida, N., Ono, S., Koda, T., Kamijo, T., Nakagawara, A. and Kizaki, H. (2008) Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J. Biol. Chem. 283, 3979-3987. https://doi.org/10.1074/jbc.M705232200
  73. Ozaki, T. and Nakagawara, A. (2011) Role of p53 in cell death and human cancers. Cancers 3, 994-1013. https://doi.org/10.3390/cancers3010994
  74. Palsson-McDermott, E. M. and O'neill, L. A. (2013) The Warburg effect then and now: from cancer to inflammatory diseases. Bioessays 35, 965-973. https://doi.org/10.1002/bies.201300084
  75. Pan, W., Yang, H., Cao, C., Song, X., Wallin, B., Kivlin, R., Lu, S., Hu, G., Di, W. and Wan, Y. (2008) AMPK mediates curcumin-induced cell death in CaOV3 ovarian cancer cells. Oncol. Rep. 20, 1553-1559.
  76. Pandit, M., Kil, Y. S., Ahn, J. H., Pokhrel, R. H., Gu, Y., Mishra, S., Han, Y., Ouh, Y. T., Kang, B., Jeong, M. S., Kim, J. O., Nam, J. W., Ko, H. J. and Chang, J. H. (2023) Methionine consumption by cancer cells drives a progressive upregulation of PD-1 expression in CD4 T cells. Nat. Commun. 14, 2593.
  77. Pandit, M., Timilshina, M., Gu, Y., Acharya, S., Chung, Y., Seo, S. U. and Chang, J. H. (2022) AMPK suppresses Th2 cell responses by repressing mTORC2. Exp. Mol. Med. 54, 1214-1224. https://doi.org/10.1038/s12276-022-00832-x
  78. Pardoll, D. M. (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252-264. https://doi.org/10.1038/nrc3239
  79. Park, I.-J., Yang, W. K., Nam, S.-H., Hong, J., Yang, K. R., Kim, J., Kim, S. S., Choe, W., Kang, I. and Ha, J. (2014) Cryptotanshinone induces G1 cell cycle arrest and autophagic cell death by activating the AMP-activated protein kinase signal pathway in HepG2 hepatoma. Apoptosis 19, 615-628. https://doi.org/10.1007/s10495-013-0929-0
  80. Park, J. B., Lee, M. S., Cha, E. Y., Lee, J. S., Sul, J. Y., Song, I. S. and Kim, J. Y. (2012) Magnolol-induced apoptosis in HCT-116 colon cancer cells is associated with the AMP-activated protein kinase signaling pathway. Biol. Pharm. Bull. 35, 1614-1620. https://doi.org/10.1248/bpb.b12-00352
  81. Penfold, L., Woods, A., Pollard, A. E., Arizanova, J., Pascual-Navarro, E., Muckett, P. J., Dore, M. H., Montoya, A., Whilding, C., Fets, L., Mokochinski, J., Constantin, T. A., Varela-Carver, A., Leach, D. A., Bevan, C. L., Nikitin, A. Y., Hall, Z. and Carling, D. (2023) AMPK activation protects against prostate cancer by inducing a catabolic cellular state. Cell Rep. 42, 112396.
  82. Pennock, N. D., White, J. T., Cross, E. W., Cheney, E. E., Tamburini, B. A. and Kedl, R. M. (2013) T cell responses: naive to memory and everything in between. Adv. Physiol. Educ. 37, 273-283. https://doi.org/10.1152/advan.00066.2013
  83. Pokhrel, R. H., Acharya, S., Ahn, J. H., Gu, Y., Pandit, M., Kim, J. O., Park, Y. Y., Kang, B., Ko, H. J. and Chang, J. H. (2021) AMPK promotes antitumor immunity by downregulating PD-1 in regulatory T cells via the HMGCR/p38 signaling pathway. Mol. Cancer 20, 133.
  84. Pokhrel, R. H., Kang, B., Timilshina, M. and Chang, J. H. (2022) AMPK amplifies IL2-STAT5 signaling to maintain stability of regulatory T cells in aged mice. Int. J. Mol. Sci. 23, 12384.
  85. Prescott, S. M. and Fitzpatrick, F. (2000) Cyclooxygenase-2 and carcinogenesis. Biochim. Biophys. Acta 1470, M69-M78. https://doi.org/10.1016/S0304-419X(00)00006-8
  86. Prives, C. and Hall, P. A. (1999) The p53 pathway. J. Pathol. 187, 112-126. https://doi.org/10.1002/(SICI)1096-9896(199901)187:1<112::AID-PATH250>3.0.CO;2-3
  87. Rao, E., Zhang, Y., Zhu, G., Hao, J., Persson, X.-M. T., Egilmez, N. K., Suttles, J. and Li, B. (2015) Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget 6, 7944.
  88. Rattan, R., Giri, S., Singh, A. K. and Singh, I. (2005) 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J. Biol. Chem. 280, 39582-39593. https://doi.org/10.1074/jbc.M507443200
  89. Sadria, M., Seo, D. and Layton, A. T. (2022) The mixed blessing of AMPK signaling in cancer treatments. BMC Cancer 22, 105.
  90. Salminen, A., Hyttinen, J. M. and Kaarniranta, K. (2011) AMP-activated protein kinase inhibits NF-kappaB signaling and inflammation: impact on healthspan and lifespan. J. Mol. Med. (Berl.) 89, 667-676. https://doi.org/10.1007/s00109-011-0748-0
  91. Salminen, A. and Kaarniranta, K. (2009) NF-κB signaling in the aging process. J. Clin. Immunol. 29, 397-405. https://doi.org/10.1007/s10875-009-9296-6
  92. Semenza, G. L. (2003) Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721-732. https://doi.org/10.1038/nrc1187
  93. Semenza, G. L., Nejfelt, M. K., Chi, S. M. and Antonarakis, S. E. (1991) Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc. Natl. Acad. Sci. U. S. A. 88, 5680-5684. https://doi.org/10.1073/pnas.88.13.5680
  94. Shackelford, D. B. and Shaw, R. J. (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563-575. https://doi.org/10.1038/nrc2676
  95. Shaw, R. J., Kosmatka, M., Bardeesy, N., Hurley, R. L., Witters, L. A., DePinho, R. A. and Cantley, L. C. (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl. Acad. Sci. U. S. A. 101, 3329-3335. https://doi.org/10.1073/pnas.0308061100
  96. Shieh, J.-M., Chen, Y.-C., Lin, Y.-C., Lin, J.-N., Chen, W.-C., Chen, Y.-Y., Ho, C.-T. and Way, T.-D. (2013) Demethoxycurcumin inhibits energy metabolic and oncogenic signaling pathways through AMPK activation in triple-negative breast cancer cells. J. Agric. Food Chem. 61, 6366-6375. https://doi.org/10.1021/jf4012455
  97. Shoeb, M., Ramana, K. V. and Srivastava, S. K. (2013) Aldose reductase inhibition enhances TRAIL-induced human colon cancer cell apoptosis through AKT/FOXO3a-dependent upregulation of death receptors. Free Radic. Biol. Med. 63, 280-290. https://doi.org/10.1016/j.freeradbiomed.2013.05.039
  98. Song, G., Mao, Y., Cai, Q., Yao, L., Ouyang, G. and Bao, S. (2005) Curcumin induces human HT-29 colon adenocarcinoma cell apoptosis by activating p53 and regulating apoptosis-related protein expression. Braz. J. Med. Biol. Res. 38, 1791-1798. https://doi.org/10.1590/S0100-879X2005001200007
  99. Stancu, A. L. (2015) AMPK activation can delay aging. Discoveries (Craiova) 3, e53.
  100. Storozhuk, Y., Hopmans, S., Sanli, T., Barron, C., Tsiani, E., Cutz, J., Pond, G., Wright, J., Singh, G. and Tsakiridis, T. (2013) Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. Br. J. Cancer 108, 2021-2032. https://doi.org/10.1038/bjc.2013.187
  101. Su, C. C., Hsieh, K. L., Liu, P. L., Yeh, H. C., Huang, S. P., Fang, S. H., Cheng, W. C., Huang, K. H., Chiu, F. Y., Lin, I. L., Huang, M. Y. and Li, C. Y. (2019) AICAR induces apoptosis and inhibits migration and invasion in prostate cancer cells through an AMPK/mTOR-dependent pathway. Int. J. Mol. Sci. 20, 1647.
  102. Sugiyama, M., Takahashi, H., Hosono, K., Endo, H., Kato, S., Yoneda, K., Nozaki, Y., Fujita, K., Yoneda, M. and Wada, K. (2009) Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway. Int. J. Oncol. 34, 339-344.
  103. Sun, L., Fu, J. and Zhou, Y. (2017) Metabolism controls the balance of Th17/T-regulatory cells. Front. Immunol. 8, 1632.
  104. Sun, Q., Chen, X., Ma, J., Peng, H., Wang, F., Zha, X., Wang, Y., Jing, Y., Yang, H., Chen, R., Chang, L., Zhang, Y., Goto, J., Onda, H., Chen, T., Wang, M. R., Lu, Y., You, H., Kwiatkowski, D. and Zhang, H. (2011) Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc. Natl. Acad. Sci. U. S. A. 108, 4129-4134. https://doi.org/10.1073/pnas.1014769108
  105. Swinnen, J. V., Brusselmans, K. and Verhoeven, G. (2006) Increased lipogenesis in cancer cells: new players, novel targets. Curr. Opin. Clin. Nutr. Metab. Care 9, 358-365. https://doi.org/10.1097/01.mco.0000232894.28674.30
  106. Szwed, A., Kim, E. and Jacinto, E. (2021) Regulation and metabolic functions of mTORC1 and mTORC2. Physiol. Rev. 101, 1371-1426. https://doi.org/10.1152/physrev.00026.2020
  107. Tamas, P., Hawley, S. A., Clarke, R. G., Mustard, K. J., Green, K., Hardie, D. G. and Cantrell, D. A. (2006) Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J. Exp. Med. 203, 1665-1670. https://doi.org/10.1084/jem.20052469
  108. Tilstra, J. S., Clauson, C. L., Niedernhofer, L. J. and Robbins, P. D. (2011) NF-kappaB in aging and disease. Aging Dis. 2, 449-465.
  109. Tsakiridis, E. E., Broadfield, L., Marcinko, K., Biziotis, O. D., Ali, A., Mekhaeil, B., Ahmadi, E., Singh, K., Mesci, A., Zacharidis, P. G., Anagnostopoulos, A. E., Berg, T., Muti, P., Steinberg, G. R. and Tsakiridis, T. (2021) Combined metformin-salicylate treatment provides improved anti-tumor activity and enhanced radiotherapy response in prostate cancer; drug synergy at clinically relevant doses. Transl. Oncol. 14, 101209.
  110. Tseng, H. I., Zeng, Y. S., Lin, Y. J., Huang, J. W., Lin, C. L., Lee, M. H., Yang, F. W., Fang, T. P., Mar, A. C. and Su, J. C. (2022) A novel AMPK activator shows therapeutic potential in hepatocellular carcinoma by suppressing HIF1alpha-mediated aerobic glycolysis. Mol. Oncol. 16, 2274-2294. https://doi.org/10.1002/1878-0261.13211
  111. Vogelstein, B., Lane, D. and Levine, A. J. (2000) Surfing the p53 network. Nature 408, 307-310. https://doi.org/10.1038/35042675
  112. Vousden, K. H. and Prives, C. (2009) Blinded by the light: the growing complexity of p53. Cell 137, 413-431. https://doi.org/10.1016/j.cell.2009.04.037
  113. Wang, R., Dillon, C. P., Shi, L. Z., Milasta, S., Carter, R., Finkelstein, D., McCormick, L. L., Fitzgerald, P., Chi, H. and Munger, J. (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871-882. https://doi.org/10.1016/j.immuni.2011.09.021
  114. Wang, R. and Green, D. R. (2012) The immune diet: meeting the metabolic demands of lymphocyte activation. F1000 Biol. Rep. 4, 9.
  115. Wang, Y., Xu, W., Yan, Z., Zhao, W., Mi, J., Li, J. and Yan, H. (2018) Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways. J. Exp. Clin. Cancer Res. 37, 63.
  116. Ward, P. S. and Thompson, C. B. (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 297-308. https://doi.org/10.1016/j.ccr.2012.02.014
  117. Weidemann, A. and Johnson, R. S. (2008) Biology of HIF-1alpha. Cell Death Differ. 15, 621-627. https://doi.org/10.1038/cdd.2008.12
  118. Williams, C. S., Shattuck-Brandt, R. L. and DuBois, R. N. (1999) The role of COX-2 in intestinal cancer. Expert Opin. Investig. Drugs 8, 1-12. https://doi.org/10.1517/13543784.8.1.1
  119. Woo, S. M., Seo, S. U., Kim, S. H., Nam, J. O., Kim, S., Park, J. W., Min, K. J. and Kwon, T. K. (2019) Hispidulin enhances TRAIL-mediated apoptosis via CaMKKβ/AMPK/USP51 axis-mediated Bim stabilization. Cancers (Basel) 11, 1960.
  120. Woods, A., Johnstone, S. R., Dickerson, K., Leiper, F. C., Fryer, L. G., Neumann, D., Schlattner, U., Wallimann, T., Carlson, M. and Carling, D. (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004-2008. https://doi.org/10.1016/j.cub.2003.10.031
  121. Yang, Y. C., Tang, Y. A., Shieh, J. M., Lin, R. K., Hsu, H. S. and Wang, Y. C. (2014) DNMT3B overexpression by deregulation of FOXO3a-mediated transcription repression and MDM2 overexpression in lung cancer. J. Thorac. Oncol. 9, 1305-1315. https://doi.org/10.1097/JTO.0000000000000240
  122. Yao, F., Ji, G. Y. and Zhang, L. (2012) AMPK: a novel target controlling inflammation. Sheng Li Xue Bao 64, 341-345.
  123. Yue, W., Yang, C. S., DiPaola, R. S. and Tan, X. L. (2014) Repurposing of metformin and aspirin by targeting AMPK-mTOR and inflammation for pancreatic cancer prevention and treatment. Cancer Prev. Res. (Phila.) 7, 388-397. https://doi.org/10.1158/1940-6207.CAPR-13-0337
  124. Yun, S. M., Jung, J. H., Jeong, S. J., Sohn, E. J., Kim, B. and Kim, S. H. (2014) Tanshinone IIA induces autophagic cell death via activation of AMPK and ERK and inhibition of mTOR and p70 S6K in KBM-5 leukemia cells. Phytother. Res. 28, 458-464. https://doi.org/10.1002/ptr.5015
  125. Yun, Z., Zou, Z., Sun, S. and Che, H. (2022) Chlorogenic acid improves food allergy through the AMPK/ACC/CPT-1 pathway. J. Food Biochem. 46, e14505.
  126. Yung, M. M. H., Siu, M. K. Y., Ngan, H. Y. S., Chan, D. W. and Chan, K. K. L. (2022) Orchestrated action of AMPK activation and combined VEGF/PD-1 blockade with lipid metabolic tunning as multi-target therapeutics against ovarian cancers. Int. J. Mol. Sci. 23, 6857.
  127. Zadra, G., Photopoulos, C., Tyekucheva, S., Heidari, P., Weng, Q. P., Fedele, G., Liu, H., Scaglia, N., Priolo, C., Sicinska, E., Mahmood, U., Signoretti, S., Birnberg, N. and Loda, M. (2014) A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis. EMBO Mol. Med. 6, 519-538. https://doi.org/10.1002/emmm.201302734
  128. Zhang, X., Zhuang, T., Liang, Z., Li, L., Xue, M., Liu, J. and Liang, H. (2017) Breast cancer suppression by aplysin is associated with inhibition of PI3K/AKT/FOXO3a pathway. Oncotarget 8, 63923.
  129. Zhang, Y., Xu, S., Lin, J., Yao, G., Han, Z., Liang, B., Zou, Z., Chen, Z., Song, Q., Dai, Y., Gao, T., Liu, A. and Bai, X. (2012) mTORC1 is a target of nordihydroguaiaretic acid to prevent breast tumor growth in vitro and in vivo. Breast Cancer Res. Treat. 136, 379-388. https://doi.org/10.1007/s10549-012-2270-7
  130. Zheng, Y., Delgoffe, G. M., Meyer, C. F., Chan, W. and Powell, J. D. (2009) Anergic T cells are metabolically anergic. J. Immunol. 183, 6095-6101. https://doi.org/10.4049/jimmunol.0803510
  131. Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M. F., Goodyear, L. J. and Moller, D. E. (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167-1174. https://doi.org/10.1172/JCI13505
  132. Zhu, P., Wang, L., Xu, P., Tan, Q., Wang, Y., Feng, G. and Yuan, L. (2022) GANT61 elevates chemosensitivity to cisplatin through regulating the Hedgehog, AMPK and cAMP pathways in ovarian cancer. Future Med. Chem. 14, 479-500. https://doi.org/10.4155/fmc-2021-0310
  133. Zong, H., Yin, B., Zhou, H., Cai, D., Ma, B. and Xiang, Y. (2014) Inhibition of mTOR pathway attenuates migration and invasion of gallbladder cancer via EMT inhibition. Mol. Biol. Rep. 41, 4507-4512. https://doi.org/10.1007/s11033-014-3321-4