Acknowledgement
This paper was supported by Dongyang Mirae University research fund in 2023.
References
- Agrusti, F., Bonavolonta, G., & Mezzini, M. (2019). University dropout prediction through educational data mining techniques: A systematic review. Journal of e-learning and knowledge society, 15(3), 161-182. DOI : 10.20368/1971-8829/1135017
- Aina, C., Baici, E., Casalone, G., & Pastore, F. (2022). The determinants of university dropout: A review of the socio-economic literature. Socio-Economic Planning Sciences, 79, 101102. DOI : 10.1016/j.seps.2021.101102
- Alban, M., & Mauricio, D. (2019). Predicting university dropout through data mining: a systematic literature. Indian Journal of Science and Technology, 12(4), 1-12. DOI : 10.17485/ijst/2019/v12i4/139729
- Ameen, A. O., Alarape, M. A., & Adewole, K. S. (2019). Students' academic performance and dropout predictions: A review. Malaysian Journal of Computing, 4(2), 278-303. DOI : 10.24191/mjoc.v4i2.6701
- Astin, A. W. (1964). Personal and environmental factors associated with college dropouts among high aptitude students. Journal of Educational Psychology, 55(4), 219. DOI : 10.1037/h0046924
- Aulck, L., Velagapudi, N., Blumenstock, J., & West, J. (2016). Predicting student dropout in higher education. arXiv preprint arXiv:1606. 06364. DOI : 10.48550/arXiv.1606.06364
- Behr, A., Giese, M., Teguim K, H. D., & Theune, K. (2020). Early prediction of university dropoutsa random forest approach. Jahrbucher fur Nationalokonomie und Statistik, 240(6), 743-789. DOI : 0.1515/jbnst-2019-0006 https://doi.org/10.1515/jbnst-2019-0006
- Bernardo, A. B., Galve-Gonzalez, C., Nunez, J. C., & Almeida, L. S. (2022). A path model of university dropout predictors: the role of satisfaction, the use of self-regulation learning strategies and students' engagement. Sustainability, 14(3), 1057.
- Del Bonifro, F., Gabbrielli, M., Lisanti, G., & Zingaro, S. P. (2020). Student dropout prediction. In Artificial Intelligence in Education: 21st International Conference, AIED 2020, Ifrane, Morocco, July 6-10, 2020, Proceedings, Part I 21, 129-140. DOI : 10.3390/su14031057
- Delen, D. (2010). A comparative analysis of machine learning techniques for student retention management. Decision Support Systems, 49(4), 498-506. DOI : 10.1016/j.dss.2010.06.003
- Demeter, E., Dorodchi, M., Al-Hossami, E., Benedict, A., Slattery Walker, L., & Smail, J. (2022). Predicting first-time-in-college students' degree completion outcomes. Higher Education, 1-21. DOI : 10.1007/s10734-021-00790-9
- Lee, S., & Chung, J. Y. (2019). The machine learning-based dropout early warning system for improving the performance of dropout prediction. Applied Sciences, 9(15), 3093. DOI : 10.3390/app9153093
- Lizarte Simon, E. J., & Gijon Puerta, J. (2022). Prediction of early dropout in higher education using the SCPQ. Cogent Psychology, 9(1), 2123588. DOI : 10.1080/23311908.2022.2123588
- Lounsbury, J. W., Saudargas, R. A., & Gibson, L. W. (2004). An investigation of personality traits in relation to intention to withdraw from college. Journal of College Student Development, 45(5), 517-534. DOI : 10.1353/csd.2004.0059
- Lykourentzou, I., Giannoukos, I., Nikolopoulos, V., Mpardis, G., & Loumos, V. (2009). Dropout prediction in e-learning courses through the combination of machine learning techniques. Computers & Education, 53(3), 950-965. DOI : 10.1016/j.compedu.2009.05.010
- Mduma, N., Kalegele, K., & Machuve, D. (2019). A survey of machine learning approaches and techniques for student dropout prediction. Data Science Journal, 18, 14-14.
- Mortada, L., Bolbol, J., & Kadry, S. (2018). Factors affecting students' performance a case of private colleges in Lebanon. J Math Stat Anal, 1, 105. DOI : 10.5334/dsj-2019-014
- Niyogisubizo, J., Liao, L., Nziyumva, E., Murwanashyaka, E., & Nshimyumukiza, P. C. (2022). Predicting student's dropout in university classes using two-layer ensemble machine learning approach: A novel stacked generalization. Computers and Education: Artificial Intelligence, 3, 100066. DOI : 10.1016/j.caeai.2022.100066
- OECD. (2019). Education at a Glance 2019 : OECD Indicators. Paris : OECD Publishing. DOI : 10.1787/19991487
- Orooji, M., & Chen, J. (2019, December). Predicting louisiana public high school dropout through imbalanced learning techniques. In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA) (pp. 456-461). IEEE. DOI : 10.1109/ICMLA.2019.00085
- Shafiq, D. A., Marjani, M., Habeeb, R. A. A., & Asirvatham, D. (2022). Student retention using educational data mining and predictive analytics: a systematic literature review. IEEE Access. DOI : 10.1109/ACCESS.2022.3188767.
- Tan, M., & Shao, P. (2015). Prediction of student dropout in e-Learning program through the use of machine learning method. International journal of emerging technologies in learning, 10(1). DOI : 10.3991/ijet.v10i1.4189
- Thammasiri, D., Delen, D., Meesad, P., & Kasap, N. (2014). A critical assessment of imbalanced class distribution problem: The case of predicting freshmen student attrition. Expert Systems with Applications, 41(2), 321-330. DOI : 10.1016/j.eswa.2013.07.046
- Tinto, V. (1975). Dropout from higher education: A theoretical synthesis of recent research. Review of educational research, 45(1), 89-125. DOI : 10.2307/1170024
- Tinto, V. (2006). Research and practice of student retention: What next?. Journal of college student retention: Research, Theory & Practice, 8(1), 1-19. DOI : 10.2190/4YNU-4TMB-22DJ-AN4W
- Young A, Song., Sinae, Kim. (2019). Factors Affecting College Freshmen's Intention to Drop Out. The Korea Contents Association, 19(6), 257-270. DOI : 10.5392/JKCA.2019.19.06.257
- Youngsik, Woo., Minok, Song. (2022). Relationship Between Carrer Decision Level, Academic Self-effcacy, Self-directed Learning Ability, and College Life Adptation of Junior College Freshmen. The Journal of Humanities and Social Science 21, 13(4), 1417-1432.
- Kostat. (2023). Birth Statistics in 2022 [Press Release].