DOI QR코드

DOI QR Code

Class-based Analysis and Design to Realize a Personalized Learning System

맞춤형 학습 실현을 위한 클래스 기반 시스템 분석 및 설계

  • Suah Choe (School of Computer Science and Engineering, Kyungpook National University) ;
  • Eunjoo Lee (School of Computer Science and Engineering, Kyungpook National University) ;
  • Woosung Jung (Graduate School of Education, Seoul National University of Education)
  • 최수아 (경북대학교 컴퓨터학부) ;
  • 이은주 (경북대학교 컴퓨터학부) ;
  • 정우성 (서울교육대학교 교육전문대학원)
  • Received : 2023.12.22
  • Accepted : 2024.02.20
  • Published : 2024.02.28

Abstract

In the current epoch of educational technology (EdTech), the realization of a personalized learning system has become increasingly important. This is due to the growing diversity of today's learners in terms of backgrounds, learning styles, and abilities. Traditional educational methods that deliver the same content to all learners often fail to take this diversity into account. This paper identifies models that comprehensively analyze learners' characteristics, interests, and learning histories to meet the growing demand for learner-centered education. Based on these models, we have designed a personalized learning system. This system is structured to support autonomous learning tailored to the learner's current level and goals by identifying strengths and weaknesses based on the learner's learning history. In addition, the system is designed to extend necessary learning elements without changing its architecture. Through this research, we can identify the essential foundations for constructing a user-tailored learning system and effectively develop a system architecture to support personalized learning.

현대 학습자들은 배경, 학습 스타일, 능력 등에서 다양한 차이를 보인다. 하지만 모든 학습자에게 동일한 학습 내용을 전달하는 전통적 교육 방법은 이러한 학습자의 다양성을 충분히 고려하지 못한다. 따라서 개별 학습자의 특성에 따라 최적의 학습 경험을 제공하는 맞춤형 학습 시스템의 구현은 오늘날 에듀테크 시대에 더욱 중요해졌다. 본 논문은 증가하는 학습자 중심의 교육 요구에 따라 학습자의 특성, 관심사, 학습 이력 등을 종합적으로 분석할 수 있는 모델들을 파악한 후 이를 기반으로 맞춤형 학습 시스템을 설계했다. 본 시스템은 학습자의 학습 이력을 기반으로 학습자의 현재 수준과 목표에 맞춘 자기주도적 학습을 지원하기 위해 강점과 약점을 파악할 수 있도록 설계되었으며 이 과정에서 시스템의 설계 변경 없이 필요한 학습 요소들을 확장할 수 있도록 구성하였다. 본 연구를 통해 사용자 맞춤형 학습 시스템 구축에 필요한 주요 기반을 파악하고 맞춤형 학습을 지원하기 위한 시스템 아키텍처를 효과적으로 구축할 수 있다.

Keywords

Acknowledgement

This work was supported by the 2023 Research Fund of Seoul National University of Education.

References

  1. Manabu, S. (2017). When classes change, schools change. Seoul : Eduniety.
  2. M. H. Kim, J. W. Han & Y. E. Yoo. (2023). A Study on the Effects and Participant Perception of Classes Applying Artificial Intelligence-Based Personalized Learning. Journal of Education & Culture, 29(1), 137-159.
  3. E. S. Seol, H. K. Lee & Y. H. Cho. (2022). Elementary school teachers' perceptions on personalized instructional design using learner data. Journal of Educational Technology, 38(1), 37-67. DOI : 10.17232/KSET.38.1.037
  4. E. S. Lim. (2023). Development of an Instructional Model for English Classes Based on an Artificial Intelligence Based Adaptive Learning System. master's thesis. Seoul University, Seoul.
  5. J. W. Jang, J. S. Park & O. Y. Han. (2023). Considering learner types and characteristics Research and Design of AI Education Adaptive Learning System. Journal of the Computer Education Association, 27(1), 215-218.
  6. Y. U. Yang, W. H. Yu & H. S. Lim. (2014). Adaptive Learning System using Real-time Learner Profiling. Digital Convergence Research, 12(2), 467-473. DOI : 10.14400/JDC.2014.12.2.467
  7. Y. K. Kim, Y. J. Kim, H. J, Mun & Y. T. Woo. (2009). Design and Implementation of an Adaptive Hypermedia Learning System based on Leamer Behavioral Model. Journal of Korea Multimedia Society, 12(5), 757-766.
  8. Kaouni, M., Lakrami, F., & Labouidya, O. (2023). The Design of An Adaptive E-learning Model Based on Artificial Intelligence for Enhancing Online Teaching. International Journal of Emerging Technologies in Learning (Online), 18(6), 202.
  9. S. H. Kim & S. H. Kim. (2002). A Student Modeling Technique for Developing Student's Level Oriented Dynamic Tutoring System for Science Class. Journal of the Korea Society of Computer and Information, 7(2), 59-67.
  10. T. B. Yoon & J. H. Lee. (2013). A Study on Learner Modeling Technology and Applications for Intelligent Tutoring Systems. Journal of the Korea academia-industrial cooperation society, 14(12), 6455-6460. https://doi.org/10.5762/KAIS.2013.14.12.6455
  11. Ding, W., Zhu, Z., & Guo, Q. (2018). A new learner model in adaptive learning system. 2018 3rd International Conference on Computer and Communication Systems (ICCCS), 440-443. IEEE.
  12. Ma, Y., Wang, L., Zhang, J., Liu, F., & Jiang, Q. (2023). A Personalized Learning Path Recommendation Method Incorporating Multi-Algorithm. Applied Sciences, 13(10), 5946.
  13. S. T. Kim. (2008). A Study of Developing and Applying of Learner-Leading e-Learning Contents Model for Vacational High school. Journal of the Korean Society for Industrial Education, 33(1), 44-66.
  14. S. H. Ann. (2002). Design a Model of Educational Contents for Problem Based Learning using ICT. The Journal of the Korea Contents Association, 2(1), 7-15.
  15. E. Y. Lee. (2011). Designing the Archival Contents Sample for Education Based on Curriculum-standards Analysis. Journal of the Korean Journal of Records Management, 11(2), 165-188.
  16. S. Y. Ma. (2017). Construction of Subject models of Smart Learning Spanish Education, Journal of Latin American Research, 36(3), 35-64. DOI : 10.17855/jlas.2017.08.36.3.35
  17. E. Gamma, R. Johnson & G. Booch. (1995). Design Patterns: Elements of Reusable ObjectOriented Software. Massachusetts : Addison Wesley.