DOI QR코드

DOI QR Code

Recent Advances on MOF-assisted Atmospheric Water Harvesting at Dry Regions

수분 수착 MOF를 이용한 건조한 지역의 대기 중 워터하베스팅 기술의 최근 동향

  • Geunho Lee (Department of Mechanical Engineering, Pohang University of Science and Technology) ;
  • Woochul Song (Division of Environmental Science and Engineering, Pohang University of Science and Technology)
  • 이근호 (포항공과대학교 기계공학과) ;
  • 송우철 (포항공과대학교 환경공학부)
  • Received : 2023.12.08
  • Accepted : 2024.02.05
  • Published : 2024.02.29

Abstract

As a promising method to address global water scarcity, sorbent-assisted water harvesting from air has shown great potential to deliver drinking water for inlands lacking traditional water sources. In this article, the recent studies of using metal-organic frameworks (MOFs) as sorbents to harvest atmospheric water will be introduced. Compared to the other sorbent materials such as zeolites or silica-based materials, MOFs have shown prospective properties such as the water isotherm inflection points as low as ~10%, which are suitable for harvesting water at dry regions. Due to this property, recently, MOFs have been extensively adopted to develop practical water harvesting devices that can harvest water. Since atmospheric water is accessible anywhere and anytime in the world, this technology is expected to open a new avenue in terms of securing safe water for the future.

전 세계적인 물 부족을 해결하기 위한 유망한 방법으로 수착제를 이용하여 공기 중에서 물을 수확하는 기술은 수자원이 부족한 지역에서 식수를 전달할 수 있는 큰 잠재력을 보여주고 있음. 본 총설에서는 대기 중 물을 수확하기 위한 수착제로 금속유기골격구조(MOF)를 사용하는 최근 연구에 대해 소개함. 제올라이트나 실리카 기반 물질과 같은 다른 수착제 물질에 비해, MOF는 상대습도 10% 부근에서 물 수착 곡선의 변곡점을 보이는 특성 덕분에 건조한 사막지역에서 물을 수확하기에 적합한 특성을 가지고 있음. 이러한 특성으로 말미암아 최근 MOF를 이용하여 물을 수확할 수 있는 실용적인 물 수확 장치를 개발하기 위한 연구가 활발히 진행되고 있음. 이 기술은 전 세계 어느 곳에서나 지리 환경적 영향을 받지 않고 대기 중의 물에 접근할 수 있기 때문에, 미래 지속가능한 수자원 확보 기술 측면에서 새로운 패러다임을 제시할 것으로 기대됨.

Keywords

Acknowledgement

This research was supported by Pohang University of Science and Technology (2023).

References

  1. M. M. Mekonnen and A. Y. Hoekstra, "Four billion people facing severe water scarcity", Sci. Adv., 2, e1500323 (2016). 
  2. J. S. Famiglietti, "The global groundwater crisis", Nat. Clim. Chang., 4, 945-948 (2014).  https://doi.org/10.1038/nclimate2425
  3. A. Y. Hoekstra, and M. M. Mekonnen, "The water footprint of humanity", Proc. Natl. Acad. Sci. U.S.A., 109, 3232-3237 (2012).  https://doi.org/10.1073/pnas.1109936109
  4. M. Elimelech and W. A. Phillip, "The future of seawater desalination: Energy, technology, and the environment", Science, 333, 712-717 (2011).  https://doi.org/10.1126/science.1200488
  5. N. C. Darre and G. S. Toor, "Desalination of water: A review", Curr. Pollut. Rep., 4, 104-111 (2018).  https://doi.org/10.1007/s40726-018-0085-9
  6. W. Xu and O. M. Yaghi, "Metal-organic frameworks for water harvesting from air, anywhere, anytime", ACS Cent. Sci., 6, 1348-1354 (2020).  https://doi.org/10.1021/acscentsci.0c00678
  7. Z. Zheng, H. L. Nguyen, N. Hanikel, K. K-Y. Li, Z. Zhou, T. Ma, and O. M. Yaghi, "High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air", Nat. Protoc., 18, 136-156 (2023).  https://doi.org/10.1038/s41596-022-00756-w
  8. C. M. Regalado and A. Ritter, "The design of an optimal fog water collector: A theoretical analysis", Atmos. Res., 178-179, 45-54 (2016).  https://doi.org/10.1016/j.atmosres.2016.03.006
  9. A. Gioda, R. E. Guasp, and A. A. Baladon, "Fog collectors in tropical areas", Proceedings of the International Symposium on Precipitation and Evaporation, vol. 3, Eds. A. Becker, B. Sevruk, and M. Lapin, pp. 20-24, Bratislava, Slovakia (1993). 
  10. I. Haechler, H. Park, G. Schnoering, T. Gulich, M. Rohner, A. Tripathy, A. Milionis, T. M. Schutzius, and D. Poulikakos, "Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere", Sci. Adv., 7, eabf3978 (2021). 
  11. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, "Passive radiative cooling below ambient air temperature under direct sunlight", Nature, 515, 540-544 (2014).  https://doi.org/10.1038/nature13883
  12. S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silverstrini, and G. Troise, "The radiative cooling of selective surfaces", Sol. Energy, 17, 83-89 (1975).  https://doi.org/10.1016/0038-092X(75)90062-6
  13. B. Gido, E. Friedler, and D. M. Broday, "Assessment of atmospheric moisture harvesting by direct cooling", Atmos. Res., 182, 156-162 (2016).  https://doi.org/10.1016/j.atmosres.2016.07.029
  14. H. Furukawa, F. Gandara, Y.-B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson, and O. M. Yaghi, "Water adsorption in porous metal-organic frameworks and related materials", J. Am. Chem. Soc., 136, 4369-4381 (2014).  https://doi.org/10.1021/ja500330a
  15. H. Kim, S. Yang, S. R. Rao, S. Narayanan, E. A. Kapustin, H. Furukawa, A. S. Umans, O. M. Yaghi, and E. N. Wang, "Water harvesting from air with metal-organic frameworks powered by natural sunlight", Science, 356, 430-434 (2017).  https://doi.org/10.1126/science.aam8743
  16. N. Hanikel, M. S. Prevot, and O. M. Yaghi, "MOF water harvesters", Nature Nanotechnology, 15, 348-355 (2020).  https://doi.org/10.1038/s41565-020-0673-x
  17. H. L. Nguyen, "Covalent organic frameworks for atmospheric water harvesting", Adv. Mater., 35, 2300018 (2023). 
  18. F. Fathieh, M. J. Kalmutzki, E. A. Kapustin, P. J. Waller, J. Yang, and O. M. Yaghi, "Practical water production from desert air", Sci. Adv., 4, eaat3198 (2018). 
  19. M. J. Kalmutzki, C. S. Diercks, and O. M. Yaghi, "Metal-organic frameworks for water harvesting from air", Adv. Mater., 30, 1704304 (2018). 
  20. N. Hanikel, X. Pei, S. Chheda, H. Lyu, W. Jeong, J. Sauer, L. Gagliardi, and O. M. Yaghi, "Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting", Science, 374, 454-459 (2021).  https://doi.org/10.1126/science.abj0890
  21. W. Song, Z. Zheng, A. H. Alawadhi, and O. M. Yaghi, "MOF water harvester produces water from Death Valley desert air in ambient sunlight", Nature Water, 1, 626-634 (2023). https://doi.org/10.1038/s44221-023-00103-7