DOI QR코드

DOI QR Code

INTRINSIC THEORY OF Cv-REDUCIBILITY IN FINSLER GEOMETRY

  • Salah Gomaa Elgendi (Department of Mathematics Faculty of Science Islamic University of Madinah) ;
  • Amr Soleiman (Department of Mathematics College of Science and Arts - Qurayyat Al Jouf University, Department of Mathematics Faculty of Science Benha University)
  • Received : 2023.04.19
  • Accepted : 2023.11.14
  • Published : 2024.01.31

Abstract

In the present paper, following the pullback approach to Finsler geometry, we study intrinsically the Cv-reducible and generalized Cv-reducible Finsler spaces. Precisely, we introduce a coordinate-free formulation of these manifolds. Then, we prove that a Finsler manifold is Cv-reducible if and only if it is C-reducible and satisfies the 𝕋-condition. We study the generalized Cv-reducible Finsler manifold with a scalar π-form 𝔸. We show that a Finsler manifold (M, L) is generalized Cv-reducible with 𝔸 if and only if it is C-reducible and 𝕋 = 𝔸. Moreover, we prove that a Landsberg generalized Cv-reducible Finsler manifold with a scalar π-form 𝔸 is Berwaldian. Finally, we consider a special Cv-reducible Finsler manifold and conclude that a Finsler manifold is a special Cv-reducible if and only if it is special semi-C-reducible with vanishing 𝕋-tensor.

Keywords

References

  1. P. L. Antonelli, R. S. Ingarden, and M. Matsumoto, The theory of sprays and Finsler spaces with applications in physics and biology, Fundamental Theories of Physics, 58, Kluwer Acad. Publ., Dordrecht, 1993. https://doi.org/10.1007/978-94-015-8194-3 
  2. G. S. Asanov, Finsleroid-Finsler spaces of positive-definite and relativistic types, Rep. Math. Phys. 58 (2006), no. 2, 275-300. https://doi.org/10.1016/S0034-4877(06) 80053-4 
  3. S. G. Elgendi and L. Kozma, (α, β)-metrics satisfying the T-condition or the σTcondition, J. Geom. Anal. 31 (2021), no. 8, 7866-7884. https://doi.org/10.1007/s12220-020-00555-3 
  4. S. G. Elgendi and A. Soleiman, An intrinsic proof of Numata's theorem on Landsberg spaces, To appear in J. Korean Math. Soc. arXiv: 2304.07925 [math. DG]. 
  5. J. Grifone, Structure presque-tangente et connexions. I, Ann. Inst. Fourier (Grenoble) 22 (1972), no. 1, 287-334.  https://doi.org/10.5802/aif.407
  6. F. Ikeda, On special semi C-reducible Finsler spaces, Tensor (N.S.) 66 (2005), no. 1, 95-99. 
  7. F. Ikeda, On Finsler spaces with a special (α, β)-metric, Tensor (N.S.) 69 (2008), 150-154. 
  8. H. Izumi and M. Yoshida, On Finsler spaces of perpendicular scalar curvature, Tensor (N.S.) 32 (1978), no. 2, 219-224. 
  9. S. Kikuchi, On the condition that a Finsler space be conformally flat, Tensor (N.S.) 55 (1994), no. 1, 97-100. 
  10. M. Matsumoto, On Finsler spaces with curvature tensors of some special forms, Tensor (N.S.) 22 (1971), 201-204. 
  11. M. Matsumoto, On C-reducible Finsler spaces, Tensor (N.S.) 24 (1972), 29-37. 
  12. M. Matsumoto, Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press, Otsu, Japan, 1986. 
  13. M. Matsumoto and S. Hojo, A conclusive theorem on C-reducible Finsler spaces, Tensor (N.S.) 32 (1978), no. 2, 225-230. 
  14. R. Miron and M. Anastasiei, The geometry of Lagrange spaces: theory and applications, Fundamental Theories of Physics, 59, Kluwer Acad. Publ., Dordrecht, 1994. https://doi.org/10.1007/978-94-011-0788-4 
  15. T. N. Pandey, V. K. Chaubey, and A. Mishra, On generalized Cv-reducible Finsler spaces, Int. J. Pure Appl. Math. 80 (2012), no. 4, 467-476. 
  16. T. N. Pandey and B. Tiwari, Cv-reducible Finsler spaces, Tensor (N.S.) 61 (1999), no. 3, 212-215. 
  17. A. Soleiman, Recurrent Finsler manifolds under projective change, Int. J. Geom. Methods Mod. Phys. 13 (2016), no. 10, 1650126, 10 pp. https://doi.org/10.1142/S0219887816501267 
  18. A. Soleiman and S. G. Elgendi, The geometry of Finsler spaces of Hp-scalar curvature, Differ. Geom. Dyn. Syst. 22 (2020), 254-268. http://www.mathem.pub.ro/dgds/v22/D22-so-ZDH08.pdf 
  19. Z. Szabo, Positive definite Finsler spaces satisfying the T-condition are Riemannian, Tensor (N.S.) 35 (1981), no. 3, 247-248. 
  20. A. A. Tamim, Special Finsler manifolds, J. Egyptian Math. Soc. 10 (2002), no. 2, 149-177. 
  21. B. Tiwari, On special reducible Finsler spaces, Differ. Geom. Dyn. Syst. 14 (2012), 132-137. 
  22. N. L. Youssef, S. H. Abed, and A. Soleiman, A global approach to the theory of special Finsler manifolds, J. Math. Kyoto Univ. 48 (2008), no. 4, 857-893. https://doi.org/10.1215/kjm/1250271321 
  23. N. L. Youssef, S. H. Abed, and A. Soleiman, A global approach to the theory of connections in Finsler geometry, Tensor (N.S.) 71 (2009), no. 3, 187-208. 
  24. N. L. Youssef, S. H. Abed, and A. Soleiman, Geometric objects associated with the fundamental connections in Finsler geometry, J. Egyptian Math. Soc. 18 (2010), no. 1, 67-90. 
  25. N. L. Youssef and A. Soleiman, Characterization of Finsler spaces of scalar curvature, J. Finsler Geom. Appl. 1 (2020), no. 1, 15-25. https://doi.org/10.22098/jfga.2020.1003