References
- A. Barnes, On shear free normal flows of a perfect fluid, Gen. Relativity Gravitation 4 (1973), no. 2, 105-129. https://doi.org/10.1007/bf00762798
- A. M. Blaga, Solitons and geometrical structures in a perfect fluid spacetime, Rocky Mountain J. Math. 50 (2020), no. 1, 41-53. https://doi.org/10.1216/rmj.2020.50.41
- A. M. Blaga, On harmonicity and Miao-Tam critical metrics in a perfect fluid spacetime, Bol. Soc. Mat. Mex. (3) 26 (2020), no. 3, 1289-1299. https://doi.org/10.1007/s40590-020-00281-4
- J. P. Bourguignon, Harmonic curvature for gravitational and Yang-Mills fields, Lecture Notes in Math., Vol. 949, Springer-Verlag, Berlin and New York, 1982.
- P. H. Chavanis, Cosmology with a stiff matter era, Phys. Rev. D 92 (2015), Article ID 103004.
- B.-Y. Chen, A simple characterization of generalized Robertson-Walker spacetimes, Gen. Relativity Gravitation 46 (2014), no. 12, Art. 1833, 5 pp. https://doi.org/10.1007/s10714-014-1833-9
- U. C. De and L. Velimirovi'c, Spacetimes with semisymmetric energy-momentum tensor, Internat. J. Theoret. Phys. 54 (2015), no. 6, 1779-1783. https://doi.org/10.1007/s10773-014-2381-5
- A. Derdzinski, Compact Riemannian manifolds with harmonic curvature and nonparallel Ricci tensor, in Global differential geometry and global analysis (Berlin, 1979), 126-128, Lecture Notes in Math., 838, Springer, Berlin, 1981.
- D. Ferus, Global Differential Geometry and Global Analysis, Springer Verlag, New York, 1981.
- B. S. Guilfoyle and B. C. Nolan, Yang's gravitational theory, Gen. Relativity Gravitation 30 (1998), no. 3, 473-495. https://doi.org/10.1023/A:1018815027071
- S. Guler and S. Altay Demirbag, On Ricci symmetric generalized quasi Einstein spacetimes, Miskolc Math. Notes 16 (2015), no. 2, 853-868. https://doi.org/10.18514/MMN.2015.1447
- S. Guler and S. Altay Demirbag, On generalized quasi Einstein standard static spacetimes, J. Geom. Phys. 170 (2021), Paper No. 104366, 11 pp. https://doi.org/10.1016/j.geomphys.2021.104366
- S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, No. 1, Cambridge Univ. Press, London, 1973.
- S. Mallick, U. C. De, and Y. J. Suh, Spacetimes with different forms of energy-momentum tensor, J. Geom. Phys. 151 (2020), 103622, 8 pp. https://doi.org/10.1016/j.geomphys.2020.103622
- C. A. Mantica and L. G. Molinari, Generalized Robertson-Walker spacetimes-a survey, Int. J. Geom. Methods Mod. Phys. 14 (2017), no. 3, 1730001, 27 pp. https://doi.org/10.1142/S021988781730001X
- C. A. Mantica, L. G. Molinari and U. C. De, A condition for a perfect-fluid space-time to be a generalized Robertson-Walker space-time, J. Math. Phys. 57 (2016), Article ID 022508.
- C. A. Mantica, Y. J. Suh, and U. C. De, A note on generalized Robertson-Walker spacetimes, Int. J. Geom. Methods Mod. Phys. 13 (2016), no. 6, 1650079, 9 pp. https://doi.org/10.1142/S0219887816500791
- B. O'Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.
- E. M. Patterson, Some theorems on Ricci-recurrent spaces, J. London Math. Soc. 27 (1952), 287-295. https://doi.org/10.1112/jlms/s1-27.3.287
- G. P. Pokhariyal and R. S. Mishra, Curvature tensors and their relativistic significance. II, Yokohama Math. J. 19 (1971), no. 2, 97-103.
- R. Sharma, Proper conformal symmetries of space-times with divergence-free Weyl conformal tensor, J. Math. Phys. 34 (1993), no. 8, 3582-3587. https://doi.org/10.1063/1.530046
- H. Stephani, D. Kramer, M. Mac-Callum, C. Hoenselaers, and E. Herlt, Exact Solutions of Einstein's Field Equations, Cambridge Monographs on Mathematical Physics,Cambridge University Press, Cambridge, 2009.
- F. O. Zengin, M-projectively flat spacetimes, Math. Rep. (Bucur.) 14(64) (2012), no. 4, 363-370.
- F. O. Zengin and A. Y. Ta,sci, Spacetimes admitting the Z-symmetric tensor, Quaest. Math. 44 (2021), no. 11, 1613-1623. https://doi.org/10.2989/16073606.2020.1816587