DOI QR코드

DOI QR Code

SPACETIMES ADMITTING DIVERGENCE FREE m-PROJECTIVE CURVATURE TENSOR

  • Uday Chand De (Department of Pure Mathematics University of Calcutta) ;
  • Dipankar Hazra (Department of Mathematics University of Kalyani)
  • Received : 2023.05.02
  • Accepted : 2023.10.19
  • Published : 2024.01.31

Abstract

This paper is concerned with the study of spacetimes satisfying div 𝓜 = 0, where "div" denotes the divergence and 𝓜 is the m-projective curvature tensor. We establish that a perfect fluid spacetime with div 𝓜 = 0 is a generalized Robertson-Walker spacetime and vorticity free; whereas a four-dimensional perfect fluid spacetime becomes a Robertson-Walker spacetime. Moreover, we establish that a Ricci recurrent spacetime with div 𝓜 = 0 represents a generalized Robertson-Walker spacetime.

Keywords

References

  1. A. Barnes, On shear free normal flows of a perfect fluid, Gen. Relativity Gravitation 4 (1973), no. 2, 105-129. https://doi.org/10.1007/bf00762798
  2. A. M. Blaga, Solitons and geometrical structures in a perfect fluid spacetime, Rocky Mountain J. Math. 50 (2020), no. 1, 41-53. https://doi.org/10.1216/rmj.2020.50.41
  3. A. M. Blaga, On harmonicity and Miao-Tam critical metrics in a perfect fluid spacetime, Bol. Soc. Mat. Mex. (3) 26 (2020), no. 3, 1289-1299. https://doi.org/10.1007/s40590-020-00281-4
  4. J. P. Bourguignon, Harmonic curvature for gravitational and Yang-Mills fields, Lecture Notes in Math., Vol. 949, Springer-Verlag, Berlin and New York, 1982.
  5. P. H. Chavanis, Cosmology with a stiff matter era, Phys. Rev. D 92 (2015), Article ID 103004.
  6. B.-Y. Chen, A simple characterization of generalized Robertson-Walker spacetimes, Gen. Relativity Gravitation 46 (2014), no. 12, Art. 1833, 5 pp. https://doi.org/10.1007/s10714-014-1833-9
  7. U. C. De and L. Velimirovi'c, Spacetimes with semisymmetric energy-momentum tensor, Internat. J. Theoret. Phys. 54 (2015), no. 6, 1779-1783. https://doi.org/10.1007/s10773-014-2381-5
  8. A. Derdzinski, Compact Riemannian manifolds with harmonic curvature and nonparallel Ricci tensor, in Global differential geometry and global analysis (Berlin, 1979), 126-128, Lecture Notes in Math., 838, Springer, Berlin, 1981.
  9. D. Ferus, Global Differential Geometry and Global Analysis, Springer Verlag, New York, 1981.
  10. B. S. Guilfoyle and B. C. Nolan, Yang's gravitational theory, Gen. Relativity Gravitation 30 (1998), no. 3, 473-495. https://doi.org/10.1023/A:1018815027071
  11. S. Guler and S. Altay Demirbag, On Ricci symmetric generalized quasi Einstein spacetimes, Miskolc Math. Notes 16 (2015), no. 2, 853-868. https://doi.org/10.18514/MMN.2015.1447
  12. S. Guler and S. Altay Demirbag, On generalized quasi Einstein standard static spacetimes, J. Geom. Phys. 170 (2021), Paper No. 104366, 11 pp. https://doi.org/10.1016/j.geomphys.2021.104366
  13. S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, No. 1, Cambridge Univ. Press, London, 1973.
  14. S. Mallick, U. C. De, and Y. J. Suh, Spacetimes with different forms of energy-momentum tensor, J. Geom. Phys. 151 (2020), 103622, 8 pp. https://doi.org/10.1016/j.geomphys.2020.103622
  15. C. A. Mantica and L. G. Molinari, Generalized Robertson-Walker spacetimes-a survey, Int. J. Geom. Methods Mod. Phys. 14 (2017), no. 3, 1730001, 27 pp. https://doi.org/10.1142/S021988781730001X
  16. C. A. Mantica, L. G. Molinari and U. C. De, A condition for a perfect-fluid space-time to be a generalized Robertson-Walker space-time, J. Math. Phys. 57 (2016), Article ID 022508.
  17. C. A. Mantica, Y. J. Suh, and U. C. De, A note on generalized Robertson-Walker spacetimes, Int. J. Geom. Methods Mod. Phys. 13 (2016), no. 6, 1650079, 9 pp. https://doi.org/10.1142/S0219887816500791
  18. B. O'Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.
  19. E. M. Patterson, Some theorems on Ricci-recurrent spaces, J. London Math. Soc. 27 (1952), 287-295. https://doi.org/10.1112/jlms/s1-27.3.287
  20. G. P. Pokhariyal and R. S. Mishra, Curvature tensors and their relativistic significance. II, Yokohama Math. J. 19 (1971), no. 2, 97-103.
  21. R. Sharma, Proper conformal symmetries of space-times with divergence-free Weyl conformal tensor, J. Math. Phys. 34 (1993), no. 8, 3582-3587. https://doi.org/10.1063/1.530046
  22. H. Stephani, D. Kramer, M. Mac-Callum, C. Hoenselaers, and E. Herlt, Exact Solutions of Einstein's Field Equations, Cambridge Monographs on Mathematical Physics,Cambridge University Press, Cambridge, 2009.
  23. F. O. Zengin, M-projectively flat spacetimes, Math. Rep. (Bucur.) 14(64) (2012), no. 4, 363-370.
  24. F. O. Zengin and A. Y. Ta,sci, Spacetimes admitting the Z-symmetric tensor, Quaest. Math. 44 (2021), no. 11, 1613-1623. https://doi.org/10.2989/16073606.2020.1816587