DOI QR코드

DOI QR Code

ARTIN SYMBOLS OVER IMAGINARY QUADRATIC FIELDS

  • Dong Sung Yoon (Department of Mathematics Education Pusan National University)
  • 투고 : 2023.10.12
  • 심사 : 2024.01.23
  • 발행 : 2024.01.31

초록

Let K be an imaginary quadratic field with ring of integers 𝓞K and N be a positive integer. By K(N) we mean the ray class field of K modulo N𝓞K. In this paper, for each prime p of K relatively prime to N𝓞K we explicitly describe the action of the Artin symbol (${\frac{K_{(N)}/K}{p}}$) on special values of modular functions of level N. Furthermore, we extend the Kronecker congruence relation for the elliptic modular function j to some modular functions of higher level.

키워드

과제정보

This work was supported by a 2-Year Research Grant of Pusan National University.

참고문헌

  1. W. W. Adams and L. J. Goldstein, Introduction to Number Theory, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976.
  2. B. Cho, Modular equations for congruence subgroups of genus zero (II), J. Number Theory 231 (2022), 48-79.
  3. D. A. Cox, Primes of the Form x2 + ny2-Fermat, Class field theory, and Complex Multiplication, 3rd ed. with solutions, with contributions by Roger Lipsett, AMS Chelsea Publishing, Providence, R.I., 2022.
  4. F. Diamond and J. Shurman, A First Course in Modular Forms, Grad. Texts in Math. 228, Springer-Verlag, New York, 2005.
  5. I. S. Eum, J. K. Koo and D. H. Shin, Binary quadratic forms and ray class groups, Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 2, 695-720. https://doi.org/10.1017/prm.2018.163
  6. C. F. Gauss, Disquisitiones Arithmeticae, Leipzig, 1801.
  7. H. Hasse, Neue Begrundung der komplexen Multiplikation I, II, J. reine angew. Math. 157 (1927), 115-139, 165 (1931), 64-88.
  8. G. J. Janusz, Algebraic Number Fields, 2nd ed., Grad. Studies in Math. 7, Amer. Math. Soc., Providence, R.I., 1996.
  9. H. Y. Jung, J. K. Koo, D. H. Shin and D. S. Yoon, On some p-adic Galois representations and form class groups, Mathematika 68 (2022), no. 2, 535-564. https://doi.org/10.1112/mtk.12141
  10. H. Y. Jung, J. K. Koo, D. H. Shin and D. S. Yoon, Arithmetic properties of orders in imaginary quadratic fields, https://arxiv.org/abs/2205.10754.
  11. S. Lang, Elliptic Functions, With an appendix by J. Tate, 2nd ed., Grad. Texts in Math. 112, Spinger-Verlag, New York, 1987.
  12. J. Neukirch, Class Field Theory, Grundlehren der mathematischen Wissenschaften 280, Springer-Verlag, Berlin, 1986.
  13. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton University Press, Princeton, N.J., 1971.
  14. P. Stevenhagen, Hilbert's 12th problem, complex multiplication and Shimura reciprocity, Class field theory-its centenary and prospect (Tokyo, 1998), 161-176, Adv. Stud. Pure Math. 30, Math. Soc. Japan, Tokyo, 2001.
  15. H. Weber, Zur Theorie der Elliptischen Functionen, Acta Math. 6 (1885), no. 1, 329-416. https://doi.org/10.1007/BF02400423
  16. D. S. Yoon, Ray class invariants in terms of extended form class groups, East Asian Math. J. 37 (2021), no. 1, 87-95. https://doi.org/10.7858/EAMJ.2021.007