DOI QR코드

DOI QR Code

Cockcroft-Walton voltage multiplier-based argon vacuum gauge for high-temperature applications

  • P. N. Sidhartha (Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science-Pilani) ;
  • Tejus V. Kusur (Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science-Pilani) ;
  • Sarda Sharma (Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham) ;
  • Karumbaiah N. Chappanda (Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science-Pilani)
  • Received : 2022.08.11
  • Accepted : 2023.08.28
  • Published : 2024.01.20

Abstract

A cost-effective argon atmosphere vacuum gauge based on direct current (DC) excited glow discharge plasma for harsh environmental conditions is presented in this paper. The gauge comprises two copper electrodes separated by a pre-defined gap (1 mm, 5 mm, 10 mm, or 15 mm) excited with a 1.8 kV DC supply using a Cockcroft-Walton (CW) voltage multiplier circuit to measure vacuum pressures from 0.05 to 5 mbar. After gas breakdown has occurred, the voltage across the electrodes (plasma voltage response) is measured with a change in pressure. The proposed gauge with a 5 mm electrode gap showed an average sensitivity of 276 V/mbar with excellent thermal stability from 25 to 400 ℃. The hysteresis of the gauge is 11% over the full scale and shows an average plasma voltage response deviation of 0.9 mV/h with time when tested for 10 h under a continuous mode of operation. Overall, the device shows promise in the development of a low-cost vacuum gauge with good sensitivity and excellent immunity to high-temperature environments.

Keywords

Acknowledgement

We are grateful to the Science and Engineering Research Board for their financial support of this project. The project grant number is SRG/2019/001378.

References

  1. Maksimovich, G.G., Spektor, Y.I., Fedirko, V.N., Pichugin, A.T., Khramov, S.I.: High-temperature argon-vacuum annealing and its influence on the physicomechanical properties of titanium alloys. Sov. Mater. Sci. 17, 524-528 (1982) https://doi.org/10.1007/BF00723048
  2. Min, M., Mao, Y., Deng, Q., Wang, G., Wang, S.: Vacuum brazing of Mo to 316L stainless steel using BNi-2 paste and Cu interlayer. Vacuum 175, 109282 (2020)
  3. Wang, C.W., Wang, H.M., Li, G.R., Liu, M., Zhang, D., Wen, H.R., Ren, W.X., Gao, L.P., Chen, J.J.: Microwave vacuum sintering of FeCoNi1.5CuB0.5Y0.2 high-entropy alloy: effect of heat treatment on microstructure and mechanical property. Vacuum 181, 109738 (2020)
  4. Zha, G., Wang, Y., Cheng, M., Huang, D., Jiang, W., Xu, B., Yang, B.: Purification of crude selenium by vacuum distillation and analysis. J. Mater. Res. Technol. (2020).
  5. Zhao, Y.-M., Patange, A.: Application of plasma technologies for food preservation. Innov. Emerg. Technol. Bio-marine Food Sect. 481-494 (2022).
  6. Dozoretz, P., Stone, C., Wenzel, O.: Shrinking the pirani vacuum gauge (2005).
  7. Mo, J., Middelburg, L.M., Morana, B., Van Zeijl, H.W., Vollebregt, S., Zhang, G.: Surface-micromachined silicon carbide pirani gauges for harsh environments. IEEE Sens. J. 21, 1350-1358 (2021) https://doi.org/10.1109/JSEN.2020.3019711
  8. Zhang, F.T., Tang, Z., Yu, J., Jin, R.C.: A micro-pirani vacuum gauge based on micro-hotplate technology. Sens. Actuators A Phys. 126, 300-305 (2006) https://doi.org/10.1016/j.sna.2005.10.016
  9. Xiong, J., Li, Y., Hong, Y., Zhang, B., Cui, T., Tan, Q., Zheng, S., Liang, T.: Wireless LTCC-based capacitive pressure sensor for harsh environment. Sens. Actuators A Phys. 197, 30-37 (2013) https://doi.org/10.1016/j.sna.2013.04.007
  10. Radosavljevic, G.J., Zivanov, L.D., Smetana, W., Maric, A.M., Unger, M., Nad, L.F.: A wireless embedded resonant pressure sensor fabricated in the standard LTCC technology. IEEE Sens. J. 9, 1956-1962 (2009) https://doi.org/10.1109/JSEN.2009.2030974
  11. Moulzolf, S.C., Behanan, R., Lad, R.J., da Cunha, M.P.: Langasite SAW pressure sensor for harsh environments. In: 2012 IEEE International Ultrasonics Symposium. pp. 1224-1227. IEEE (2012)
  12. Dong, C., Myneni, G.R.: Carbon nanotube electron source based ionization vacuum gauge. Appl. Phys. Lett. 84, 5443-5445 (2004) https://doi.org/10.1063/1.1767956
  13. Su, J., Guo, D.Z., Zhang, G.M.: Miniature cold cathode ionization gauge based on composite films of carbon nanotubes and MgO nanoparticles. Tech. Dig.-25th Int. Vac. Nanoelectron. Conf. IVNC 2012. pp. 258-259 (2012)
  14. Fridman, A., Fridman, A., Kennedy, L.A., Kennedy, L.A.: Plasma Physics and Engineering. CRC Press, Boca Raton (2004)
  15. Stevens, R.: Plasma displays. SMPTE J 111, 347-351 (2002) https://doi.org/10.5594/J15333
  16. Loo, K.H., Moss, G.J., Tozer, R.C., Stone, D.A., Jinno, M., Devonshire, R.: A dynamic collisional-radiative model of a low-pressure mercury-argon discharge lamp: a physical approach to modeling fluorescent lamps for circuit simulations. IEEE Trans. Power Electron. 19, 1117-1129 (2004) https://doi.org/10.1109/TPEL.2004.830071
  17. Thrum, T., Hewett, A., Camm, D.: Experimental and theoretical determination of the transient radiation characteristics of a high power water vortex stabilized argon arc lamp. IEEE Int. Conf. Plasma Sci. (2001)
  18. Hur, M.Y., Lee, H.J., Lee, D.G., Yang, S.: Modeling of metal power synthesis using a particle trajectory method. In: An Inductively Coupled Plasma Torch. pp. 1 (2018)
  19. Yuan, W., Chappanda, K.N., Tabib-Azar, M.: Fabrication of plasma probe for chemical vapor deposition. In: 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS'11. pp. 1622-1625 (2011)
  20. Yuan, W., Chappanda, K.N., Tabib-Azar, M.: Microfabricated atmospheric RF microplasma devices for gas spectroscopy.
  21. Smirnov, B.M.: Theory of Gas Discharge Plasma, vol. 84. Springer, Cham (2015)
  22. Woodruf, K., Baeza-Rubio, J., Huerta, D., Jones, B.J.P., McDonald, A.D., Norman, L., Nygren, D.R., Adams, C., Alvarez, V., Arazi, L., Arnquist, I.J., Azevedo, C.D.R., Bailey, K., Ballester, F., Benlloch-Rodriguez, J.M., Borges, F.I.G.M., Byrnes, N.K., Carcel, S., Carrion, J.V., Cebrian, S., Church, E., Conde, C.A.N., Contreras, T., Denisenko, A.A., Diaz, G., Diaz, J., Diesburg, M., Escada, J., Esteve, R., Felkai, R., Fernandes, A.F.M., Fernandes, L.M.P., Ferrario, P., Ferreira, A.L., Foss, F.W., Freitas, E.D.C., Generowicz, J., Goldschmidt, A., Gonzalez-Diaz, D., Gomez-Cadenas, J.J., Ghosh, S., Guenette, R., Gutierrez, R.M., Haefner, J., Hafdi, K., Hauptman, J., Henriques, C.A.O., Hernando Morata, J.A., Herrero, P., Herrero, V., Johnston, S., Kekic, M., Labarga, L., Laing, A., Lebrun, P., Lopez-March, N., Losada, M., Mano, R.D.P., Martin-Albo, J., Martinez, A., Martinez-Lema, G., Monrabal, F., Monteiro, C.M.B., Mora, F.J., Munoz Vidal, J., Novella, P., Palmeiro, B., Para, A., Perez, J., Querol, M., Renner, J., Repond, J., Riordan, S., Ripoll, L., Rodriguez Garcia, Y., Rodriguez, J., Rogers, L., Romeo, B., Romo-Luque, C., Santos, F.P., Dos Santos, J.M.F., Simon, A., Sofka, C., Sorel, M., Stiegler, T., Thapa, P., Toledo, J.F., Torrent, J., Uson, A., Veloso, J.F.C.A., Webb, R., Weiss-Babai, R., White, J.T., Yahlali, N.: Radio frequency and DC high voltage breakdown of high pressure helium, argon, and xenon. J. Instrum. 15, 4022 (2020) https://doi.org/10.1088/1748-0221/15/04/P04022
  23. Wright, S.A., Gianchandani, Y.B.: A harsh environment, multi-plasma microsystem with pressure sensor, gas purifier, and chemical detector. In: Proc. IEEE Int. Conf. Micro Electro Mech. Syst., pp.115-118 (2007)
  24. Hollick, M.M., Arjomandi, M., Cazzolato, B.S.: An investigation into the sensory application of DBD plasma actuators for pressure measurement. Sen. Actuators A Phys. 171, 102-108 (2011) https://doi.org/10.1016/j.sna.2011.07.011
  25. Li, F., Luo, H., Du, J., Yuan, M., Lin, F., Nie, C.: Plasma pressure sensor based on direct current glow discharge. Aerosp. Sci. Technol. 106, 106069 (2020)
  26. Berkovich, Y., Axelrod, B., Shenkman, A.: A novel diode-capacitor voltage multiplier for increasing the voltage of photovoltaic cells. In: 11th IEEE Work. Control Model. Power Electron. COMPEL 2008 (2008)
  27. Singh, A.K., Das, P., Panda, S.K.: High voltage high frequency resonant DC-DC converter for electric propulsion for micro and nanosatellites. In: INTELEC, Int. Telecommun. Energy Conf. 2014-January (2014)
  28. Liu, J., Xu, M., Zeng, J., Wu, J., Eric, C.K.W.: Modified voltage equaliser based on Cockcroft-Walton voltage multipliers for series-connected supercapacitors. IET Electr. Syst. Transp. 8, 44-51 (2018) https://doi.org/10.1049/iet-est.2017.0016
  29. Young, C.M., Chen, M.H., Chang, T.A., Ko, C.C., Jen, K.K.: Cascade Cockcroft-Walton voltage multiplier applied to transformerless high step-up dc-dc converter. IEEE Trans. Ind. Electron. 60, 523-537 (2013) https://doi.org/10.1109/TIE.2012.2188255
  30. Jousten, K. (eds.): Handbook of Vacuum Technology. Wiley (2016). https://doi.org/10.1002/9783527688265
  31. Hara, E.: A high power symmetrical Cockcroft-Walton type voltage multiplier circuit using silicon diodes. Nucl. Instrum. Methods. 54, 91-97 (1967) https://doi.org/10.1016/S0029-554X(67)80011-9
  32. Rajaei, A., Dehghanian, I., Shahparasti, M., Poursmaeil, E.: Behavioral switching model for current-fed Cockcroft-Walton voltage multiplier. J. Power Electron. 2020(20), 365-375 (2020) https://doi.org/10.1007/s43236-020-00053-3
  33. Lieberman, M.A.: Principles of plasma discharges and materials processing [electronic resource] (2005)
  34. Bogaerts, A., Gijbels, R.: The ion- and atom-induced secondary electron emission yield: numerical study for the effect of clean and dirty cathode surfaces. Plasma Sources Sci. Technol. 11, 27-36 (2002) https://doi.org/10.1088/0963-0252/11/1/303
  35. Mathew, P., George, J., Mathews, T.S., Kurian, P.J.: Experimental verification of modified Paschen's law in DC glow discharge argon plasma. AIP Adv. 9, 25215 (2019)
  36. Gallo, C.F.: Coronas and gas discharges in electrophotography: a review. IEEE Trans. Ind. Appl. IA-11, 739-748 (1975) https://doi.org/10.1109/TIA.1975.349370
  37. Anderson, P.A.: The work function of copper. Phys. Rev. 76, 388-390 (1949) https://doi.org/10.1103/PhysRev.76.388
  38. Found, C.G.: Ionization potentials of argon, nitrogen, carbon monoxide, helium, hydrogen and mercury and iodine vapors. Phys. Rev. 16, 41-53 (1920) https://doi.org/10.1103/PhysRev.16.41
  39. Cornelis, R., Nordberg, M.: General chemistry, sampling, analytical methods, and speciation. In: Handb Toxicol. Met. Pp.11-38 (2007)
  40. Hamid, Y., Hutt, D.A., Whalley, D.C., Craddock, R.: Relative contributions of packaging elements to the thermal hysteresis of a MEMS pressure sensor. Sensors 20, 1727 (2020)
  41. Suzuki, S., Itoh, H.: Gradual increase in secondary ionization coefficient γ and charge accumulation on a dielectric electrode during DBD with repeated breakdown. Plasma Sources Sci. Technol. 24, 055016 (2015)
  42. Catherine, Y., Zamouche, A., Bullot, J., Gauthier, M.: Ion bombardment effects in plasma deposition of hydrogenated amorphous silicon carbide films: a comparative study of d.c. and r.f. discharges. Thin Solid Films 109, 145-158 (1983) https://doi.org/10.1016/0040-6090(83)90134-7
  43. Chappanda, K.N., Smith, Y.R., Rieth, L.W., Tathireddy, P., Misra, M., Mohanty, S.K.: Effect of sputtering parameters on the morphology of TiO2 nanotubes synthesized from thin Ti film on Si substrate. IEEE Trans. Nanotechnol. 14, 18-25 (2015) https://doi.org/10.1109/TNANO.2014.2360501