Acknowledgement
We are grateful to the Science and Engineering Research Board for their financial support of this project. The project grant number is SRG/2019/001378.
References
- Maksimovich, G.G., Spektor, Y.I., Fedirko, V.N., Pichugin, A.T., Khramov, S.I.: High-temperature argon-vacuum annealing and its influence on the physicomechanical properties of titanium alloys. Sov. Mater. Sci. 17, 524-528 (1982) https://doi.org/10.1007/BF00723048
- Min, M., Mao, Y., Deng, Q., Wang, G., Wang, S.: Vacuum brazing of Mo to 316L stainless steel using BNi-2 paste and Cu interlayer. Vacuum 175, 109282 (2020)
- Wang, C.W., Wang, H.M., Li, G.R., Liu, M., Zhang, D., Wen, H.R., Ren, W.X., Gao, L.P., Chen, J.J.: Microwave vacuum sintering of FeCoNi1.5CuB0.5Y0.2 high-entropy alloy: effect of heat treatment on microstructure and mechanical property. Vacuum 181, 109738 (2020)
- Zha, G., Wang, Y., Cheng, M., Huang, D., Jiang, W., Xu, B., Yang, B.: Purification of crude selenium by vacuum distillation and analysis. J. Mater. Res. Technol. (2020).
- Zhao, Y.-M., Patange, A.: Application of plasma technologies for food preservation. Innov. Emerg. Technol. Bio-marine Food Sect. 481-494 (2022).
- Dozoretz, P., Stone, C., Wenzel, O.: Shrinking the pirani vacuum gauge (2005).
- Mo, J., Middelburg, L.M., Morana, B., Van Zeijl, H.W., Vollebregt, S., Zhang, G.: Surface-micromachined silicon carbide pirani gauges for harsh environments. IEEE Sens. J. 21, 1350-1358 (2021) https://doi.org/10.1109/JSEN.2020.3019711
- Zhang, F.T., Tang, Z., Yu, J., Jin, R.C.: A micro-pirani vacuum gauge based on micro-hotplate technology. Sens. Actuators A Phys. 126, 300-305 (2006) https://doi.org/10.1016/j.sna.2005.10.016
- Xiong, J., Li, Y., Hong, Y., Zhang, B., Cui, T., Tan, Q., Zheng, S., Liang, T.: Wireless LTCC-based capacitive pressure sensor for harsh environment. Sens. Actuators A Phys. 197, 30-37 (2013) https://doi.org/10.1016/j.sna.2013.04.007
- Radosavljevic, G.J., Zivanov, L.D., Smetana, W., Maric, A.M., Unger, M., Nad, L.F.: A wireless embedded resonant pressure sensor fabricated in the standard LTCC technology. IEEE Sens. J. 9, 1956-1962 (2009) https://doi.org/10.1109/JSEN.2009.2030974
- Moulzolf, S.C., Behanan, R., Lad, R.J., da Cunha, M.P.: Langasite SAW pressure sensor for harsh environments. In: 2012 IEEE International Ultrasonics Symposium. pp. 1224-1227. IEEE (2012)
- Dong, C., Myneni, G.R.: Carbon nanotube electron source based ionization vacuum gauge. Appl. Phys. Lett. 84, 5443-5445 (2004) https://doi.org/10.1063/1.1767956
- Su, J., Guo, D.Z., Zhang, G.M.: Miniature cold cathode ionization gauge based on composite films of carbon nanotubes and MgO nanoparticles. Tech. Dig.-25th Int. Vac. Nanoelectron. Conf. IVNC 2012. pp. 258-259 (2012)
- Fridman, A., Fridman, A., Kennedy, L.A., Kennedy, L.A.: Plasma Physics and Engineering. CRC Press, Boca Raton (2004)
- Stevens, R.: Plasma displays. SMPTE J 111, 347-351 (2002) https://doi.org/10.5594/J15333
- Loo, K.H., Moss, G.J., Tozer, R.C., Stone, D.A., Jinno, M., Devonshire, R.: A dynamic collisional-radiative model of a low-pressure mercury-argon discharge lamp: a physical approach to modeling fluorescent lamps for circuit simulations. IEEE Trans. Power Electron. 19, 1117-1129 (2004) https://doi.org/10.1109/TPEL.2004.830071
- Thrum, T., Hewett, A., Camm, D.: Experimental and theoretical determination of the transient radiation characteristics of a high power water vortex stabilized argon arc lamp. IEEE Int. Conf. Plasma Sci. (2001)
- Hur, M.Y., Lee, H.J., Lee, D.G., Yang, S.: Modeling of metal power synthesis using a particle trajectory method. In: An Inductively Coupled Plasma Torch. pp. 1 (2018)
- Yuan, W., Chappanda, K.N., Tabib-Azar, M.: Fabrication of plasma probe for chemical vapor deposition. In: 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS'11. pp. 1622-1625 (2011)
- Yuan, W., Chappanda, K.N., Tabib-Azar, M.: Microfabricated atmospheric RF microplasma devices for gas spectroscopy.
- Smirnov, B.M.: Theory of Gas Discharge Plasma, vol. 84. Springer, Cham (2015)
- Woodruf, K., Baeza-Rubio, J., Huerta, D., Jones, B.J.P., McDonald, A.D., Norman, L., Nygren, D.R., Adams, C., Alvarez, V., Arazi, L., Arnquist, I.J., Azevedo, C.D.R., Bailey, K., Ballester, F., Benlloch-Rodriguez, J.M., Borges, F.I.G.M., Byrnes, N.K., Carcel, S., Carrion, J.V., Cebrian, S., Church, E., Conde, C.A.N., Contreras, T., Denisenko, A.A., Diaz, G., Diaz, J., Diesburg, M., Escada, J., Esteve, R., Felkai, R., Fernandes, A.F.M., Fernandes, L.M.P., Ferrario, P., Ferreira, A.L., Foss, F.W., Freitas, E.D.C., Generowicz, J., Goldschmidt, A., Gonzalez-Diaz, D., Gomez-Cadenas, J.J., Ghosh, S., Guenette, R., Gutierrez, R.M., Haefner, J., Hafdi, K., Hauptman, J., Henriques, C.A.O., Hernando Morata, J.A., Herrero, P., Herrero, V., Johnston, S., Kekic, M., Labarga, L., Laing, A., Lebrun, P., Lopez-March, N., Losada, M., Mano, R.D.P., Martin-Albo, J., Martinez, A., Martinez-Lema, G., Monrabal, F., Monteiro, C.M.B., Mora, F.J., Munoz Vidal, J., Novella, P., Palmeiro, B., Para, A., Perez, J., Querol, M., Renner, J., Repond, J., Riordan, S., Ripoll, L., Rodriguez Garcia, Y., Rodriguez, J., Rogers, L., Romeo, B., Romo-Luque, C., Santos, F.P., Dos Santos, J.M.F., Simon, A., Sofka, C., Sorel, M., Stiegler, T., Thapa, P., Toledo, J.F., Torrent, J., Uson, A., Veloso, J.F.C.A., Webb, R., Weiss-Babai, R., White, J.T., Yahlali, N.: Radio frequency and DC high voltage breakdown of high pressure helium, argon, and xenon. J. Instrum. 15, 4022 (2020) https://doi.org/10.1088/1748-0221/15/04/P04022
- Wright, S.A., Gianchandani, Y.B.: A harsh environment, multi-plasma microsystem with pressure sensor, gas purifier, and chemical detector. In: Proc. IEEE Int. Conf. Micro Electro Mech. Syst., pp.115-118 (2007)
- Hollick, M.M., Arjomandi, M., Cazzolato, B.S.: An investigation into the sensory application of DBD plasma actuators for pressure measurement. Sen. Actuators A Phys. 171, 102-108 (2011) https://doi.org/10.1016/j.sna.2011.07.011
- Li, F., Luo, H., Du, J., Yuan, M., Lin, F., Nie, C.: Plasma pressure sensor based on direct current glow discharge. Aerosp. Sci. Technol. 106, 106069 (2020)
- Berkovich, Y., Axelrod, B., Shenkman, A.: A novel diode-capacitor voltage multiplier for increasing the voltage of photovoltaic cells. In: 11th IEEE Work. Control Model. Power Electron. COMPEL 2008 (2008)
- Singh, A.K., Das, P., Panda, S.K.: High voltage high frequency resonant DC-DC converter for electric propulsion for micro and nanosatellites. In: INTELEC, Int. Telecommun. Energy Conf. 2014-January (2014)
- Liu, J., Xu, M., Zeng, J., Wu, J., Eric, C.K.W.: Modified voltage equaliser based on Cockcroft-Walton voltage multipliers for series-connected supercapacitors. IET Electr. Syst. Transp. 8, 44-51 (2018) https://doi.org/10.1049/iet-est.2017.0016
- Young, C.M., Chen, M.H., Chang, T.A., Ko, C.C., Jen, K.K.: Cascade Cockcroft-Walton voltage multiplier applied to transformerless high step-up dc-dc converter. IEEE Trans. Ind. Electron. 60, 523-537 (2013) https://doi.org/10.1109/TIE.2012.2188255
- Jousten, K. (eds.): Handbook of Vacuum Technology. Wiley (2016). https://doi.org/10.1002/9783527688265
- Hara, E.: A high power symmetrical Cockcroft-Walton type voltage multiplier circuit using silicon diodes. Nucl. Instrum. Methods. 54, 91-97 (1967) https://doi.org/10.1016/S0029-554X(67)80011-9
- Rajaei, A., Dehghanian, I., Shahparasti, M., Poursmaeil, E.: Behavioral switching model for current-fed Cockcroft-Walton voltage multiplier. J. Power Electron. 2020(20), 365-375 (2020) https://doi.org/10.1007/s43236-020-00053-3
- Lieberman, M.A.: Principles of plasma discharges and materials processing [electronic resource] (2005)
- Bogaerts, A., Gijbels, R.: The ion- and atom-induced secondary electron emission yield: numerical study for the effect of clean and dirty cathode surfaces. Plasma Sources Sci. Technol. 11, 27-36 (2002) https://doi.org/10.1088/0963-0252/11/1/303
- Mathew, P., George, J., Mathews, T.S., Kurian, P.J.: Experimental verification of modified Paschen's law in DC glow discharge argon plasma. AIP Adv. 9, 25215 (2019)
- Gallo, C.F.: Coronas and gas discharges in electrophotography: a review. IEEE Trans. Ind. Appl. IA-11, 739-748 (1975) https://doi.org/10.1109/TIA.1975.349370
- Anderson, P.A.: The work function of copper. Phys. Rev. 76, 388-390 (1949) https://doi.org/10.1103/PhysRev.76.388
- Found, C.G.: Ionization potentials of argon, nitrogen, carbon monoxide, helium, hydrogen and mercury and iodine vapors. Phys. Rev. 16, 41-53 (1920) https://doi.org/10.1103/PhysRev.16.41
- Cornelis, R., Nordberg, M.: General chemistry, sampling, analytical methods, and speciation. In: Handb Toxicol. Met. Pp.11-38 (2007)
- Hamid, Y., Hutt, D.A., Whalley, D.C., Craddock, R.: Relative contributions of packaging elements to the thermal hysteresis of a MEMS pressure sensor. Sensors 20, 1727 (2020)
- Suzuki, S., Itoh, H.: Gradual increase in secondary ionization coefficient γ and charge accumulation on a dielectric electrode during DBD with repeated breakdown. Plasma Sources Sci. Technol. 24, 055016 (2015)
- Catherine, Y., Zamouche, A., Bullot, J., Gauthier, M.: Ion bombardment effects in plasma deposition of hydrogenated amorphous silicon carbide films: a comparative study of d.c. and r.f. discharges. Thin Solid Films 109, 145-158 (1983) https://doi.org/10.1016/0040-6090(83)90134-7
- Chappanda, K.N., Smith, Y.R., Rieth, L.W., Tathireddy, P., Misra, M., Mohanty, S.K.: Effect of sputtering parameters on the morphology of TiO2 nanotubes synthesized from thin Ti film on Si substrate. IEEE Trans. Nanotechnol. 14, 18-25 (2015) https://doi.org/10.1109/TNANO.2014.2360501