DOI QR코드

DOI QR Code

Asymmetrical PWM split-phase boost PWM AC-AC converter with inherent output voltage balancing

  • Van‑Dai Bui (School of Energy Engineering, Kyungpook National University (KNU)) ;
  • Honnyong Cha (School of Energy Engineering, Kyungpook National University (KNU))
  • Received : 2023.06.23
  • Accepted : 2023.10.17
  • Published : 2024.01.20

Abstract

This paper introduces a direct PWM split-phase boost ac-ac converter with a high voltage gain, natural output voltage balancing, no duty-ratio limitation, and no commutation problem. Although under unbalanced load conditions, the two output voltages still are equal without auxiliary circuits and/or any dedicated controller. Moreover, the input current ripple is significantly decreased due to the interleaving effect. With a proper asymmetrical PWM scheme, the converter can work in the entire range of the duty cycle. In addition, the commutation (dead-time) problem is eliminated. The operation of the proposed structure is validated with a 500 W prototype converter. Experiment results obtained under various load conditions such as inductive, nonlinear, extreme load, and load scenarios are also provided.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government (MOTIE) (20225500000090, Advanced Control & Protection Platform for Multi-terminal MVDC System and Engineering Design Protocol).

References

  1. Peng, F.Z., Chen, L., Zhang, F.: Simple topologies of PWM ac-ac converters. IEEE Power Electron. Lett. 1(1), 10-13 (2003) https://doi.org/10.1109/LPEL.2003.814961
  2. Kim, J.H., Min, B.D., Kwon, B.H., Won, S.C.: A PWM buck-boost ac chopper solving the commutation problem. IEEE Trans. Ind. Electron. 45(5), 832-835 (1998) https://doi.org/10.1109/41.720341
  3. Fang, X.P., Qian, Z.M., Peng, F.Z.: Single-phase Z-source PWM ac-ac converters. IEEE Power Electron. Lett. 3(4), 121-124 (2005) https://doi.org/10.1109/LPEL.2005.860453
  4. Tang, Y., Xie, S., Zhang, C.: Z-source ac-ac converters solving commutation problem. IEEE Trans. Power Electron. 22(6), 2146-2154 (2007) https://doi.org/10.1109/TPEL.2007.909235
  5. Nguyen, M.K., Jung, Y.G., Lim, Y.C.: Single-phase ac-ac converter based on quasi-Z-source topology. IEEE Trans. Power Electron. 25(8), 2200-2210 (2010)
  6. Li, L., Tang, D.: Cascaded three-Level AC/AC direct converter. IEEE Trans. Ind. Electron. 59(1), 27-34 (2012) https://doi.org/10.1109/TIE.2011.2143376
  7. Khan, A.A., Cha, H., Ahmed, H.F.: High efficiency single-phase AC-AC converters without commutation problem. IEEE Trans. Power Electron. 31(8), 5655-5665 (2016) https://doi.org/10.1109/TPEL.2015.2494605
  8. Khan, U.A., Khan, A.A., Cha, H., Kim, H.-G., Kim, J., Baek, J.-W.: Dual-Buck AC-AC converter with inverting and non-inverting operations. IEEE Trans. Power Electron. 33(11), 9432-9443 (2018) https://doi.org/10.1109/TPEL.2018.2799490
  9. Khan, A.A., Cha, H., Kim, H.G.: Magnetic integration of discrete-coupled inductors in single-phase direct PWM AC-AC converters. IEEE Trans. Power Electron. 31(3), 2129-2138 (2016) https://doi.org/10.1109/TPEL.2015.2427455
  10. Khan, A.A., Cha, H., Ahmed, H.F.: An improved single-phase direct PWM inverting buck-boost ac-ac converter. IEEE Trans. Ind. Electron. 63(9), 5384-5393 (2016) https://doi.org/10.1109/TIE.2016.2565461
  11. Kim, S., Kim, H.-G., Cha, H.: Dynamic voltage restorer using switching cell structured multilevel ac-ac converter. IEEE Trans. Power Electron. 32(11), 8406-8418 (2017) https://doi.org/10.1109/TPEL.2016.2645722
  12. Croft, T., Hartwell, F., Summers, W.: American Electrician's Handbook, 17th edn. McGraw Hill, New York (2021)
  13. Wang, J., Peng, F.Z., Anderson, J., Joseph, A., Bufenbarger, R.: Low cost fuel-cell converter system for residential power generation. IEEE Trans. Power Electron. 19(4), 1315-1322 (2004) https://doi.org/10.1109/TPEL.2004.833455
  14. Kersting, W.H.: Center-tapped transformer and 120-/240-V secondary models. IEEE Trans. Ind. Appl. 45(2), 575-581 (2009) https://doi.org/10.1109/TIA.2009.2013590
  15. Stretch, N., Kazerani, M.: A stand-alone, split-phase current-sourced inverter with novel energy storage. IEEE Trans. Power Electron. 23(6), 2766-2774 (2008)
  16. Wang, W., Wang, Y., Xu, L., Chen, Y., Li, R.: Application of single-phase three-wire transformer model in distribution network with solar home system. Int. Conf. Adv. Power Syst. Autom. Prot. (APAP) 3, 1851-1856 (2011)
  17. Pilo, E., Rouco, L., Fernandez, A., Abrahamsson, L.: A mono-voltage equivalent model of bi-voltage autotransformer-based electrical systems in railways. IEEE Trans. Power Deliv. 27, 699-708 (2012) https://doi.org/10.1109/TPWRD.2011.2179814
  18. Shen, J.M., Wu, J.C., Jou, H.L.: Transformerless single phase three wire line-interactive uninterruptible power supply. IET Power Electron. 5(9), 1847-1855 (2012) https://doi.org/10.1049/iet-pel.2012.0166
  19. Tanaka, T., Sekiya, T., Tanaka, H., Okamoto, M., Hiraki, E.: Smart charger for electric vehicles with power-quality compensator on single-phase three-wire distribution feeders. IEEE Trans. Ind. Appl. 49(6), 2628-2635 (2013) https://doi.org/10.1109/TIA.2013.2262915
  20. Lazzarin, T.B., Moccelini, M.P., Barbi, I.: Split-phase switched-capacitor ac-ac converter. IET Power Electron. 8(6), 918-928 (2015) https://doi.org/10.1049/iet-pel.2014.0686
  21. Jou, H.-L., Chen, G.-R., Wu, J.-C., Wu, K.-D., Jhang, J.-M.: Three-port single-phase three-wire power converter interface for microgrid. Renew. Energy 85, 524-533 (2016) https://doi.org/10.1016/j.renene.2015.07.002
  22. de Moraes Lima Marinus, N.S., dos Santos, C., Jacobina, C.B., Rocha, N., de Freitas, N.B.: A bridgeless controlled rectifier for single split-phase systems. IEEE Trans. Ind. Appl. 53(5), 4708-4717 (2017) https://doi.org/10.1109/TIA.2017.2708681
  23. Schramm-Dall'Asta, M., Barbi, I., Lazzarin, T.B.: AC-AC hybrid boost switched-capacitor converter. IEEE Trans. Power Electron. 35(12), 13115-13125 (2020) https://doi.org/10.1109/TPEL.2020.2992490
  24. Bui, D. V., Cha. H.: Split-phase boost PWM AC-AC converter with inherent output voltage balancing. In: 2021 24th International Conference on Electrical Machines and Systems (ICEMS), pp. 208-212 (2021)
  25. Bui, D.V., Cha, H., Nguyen, V.C.: Asymmetrical PWM series-capacitor high-conversion-ratio DC-DC converter. IEEE Trans. Power Electron. Lett. 36(8), 8628-8633 (2021) https://doi.org/10.1109/TPEL.2021.3056659
  26. Chen, H.C., Lan, Y.C.: Unequal duty-ratio feedforward control to extend balanced-currents input voltage range for series-capacitor-based boost PFC converter. IEEE Trans. Ind. Electron. 70(4), 4289-4292 (2023) https://doi.org/10.1109/TIE.2022.3181384
  27. Bui, D.V., Cha, H., Nguyen, V.C.: Asymmetrical PWM scheme eliminating duty cycle limitation in input-parallel output-series DC-DC converter. IEEE Trans. Power Electron. Lett. 37(3), 2485-2490 (2022) https://doi.org/10.1109/TPEL.2021.3113732
  28. Bui, D. V., Cha, H., Nguyen, V. C.: Asymmetrical PWM scheme balancing voltages dual-outputs interleaved four-switch buck-boost DC-DC converter. In: 2022 IEEE Ninth International Conference on Communications and Electronics (ICCE), pp. 482-487 (2022)
  29. Chen, Z., Xiang, T., Wu, Y., Zhao, L., Tang, X.: Current sharing strategy of three-phase series capacitor buck converter for wide output voltage range application. IEEE J. Emerg. Sel. Topics Power Electron 11(1), 836-849 (2023) https://doi.org/10.1109/JESTPE.2022.3192540
  30. Bui, D. V., Cha, H.: Solving duty-ratio limitation four-phase IPOS DC-DC converter with asymmetrical PWM scheme. In: 2023 11th International Conference on Power Electronics and ECCE Asia (ICPE 2023-ECCE Asia), Korea, pp. 2924-2929 (2023)
  31. Nguyen, V.C., Cha, H., Bui, D.V.: Asymmetrical PWM scheme to widen the operating range of the three-phase series-capacitor buck converter. IEEE J. Emerg. Sel. Topics Power Electron. 10(5), 5987-5996 (2000) https://doi.org/10.1109/JESTPE.2022.3169336
  32. Van Bui, D., Cha, H.: Minimizing input current ripple for four-phase input-parallel output-series DC-DC converter with phase-shift modulation. IEEE Trans. Power Electron. Lett. 38(7), 8005-8010 (2023) https://doi.org/10.1109/TPEL.2023.3264792