DOI QR코드

DOI QR Code

Hybrid four-quadrant DC-DC converter for DC wind farm collection systems

  • Cheng Wang (Shenzhen Research Institute, Shandong University) ;
  • Hui Wang (Shenzhen Research Institute, Shandong University) ;
  • Tao Zhang (Shenzhen Research Institute, Shandong University)
  • Received : 2023.04.16
  • Accepted : 2023.09.26
  • Published : 2024.01.20

Abstract

This paper proposes a hybrid four-quadrant isolated DC-DC converter that enables bidirectional energy transfer and is suitable for DC wind farm collection systems. The proposed converter consists of a fully controlled DC-AC converter on the low-voltage (LV) side, a medium-frequency transformer, a resonant tank, and a four-quadrant converter composed of antiparallel thyristors connected in series on the high-voltage (HV) side. The transformer leakage inductance is incorporated in the resonant tank, which reduces the design difficulty of the transformer and helps reduce losses. Moreover, the use of thyristors as switching devices on the HV side makes it easier to meet HV and large-capacity demands and also reduces the cost of the converter. First, the converter topology and operation principle are described. Then, based on a time domain analysis, the DC voltage gain, a thyristor turn-of study, and soft-switching characteristics are detailed. Furthermore, a pulse frequency modulation-phase shift modulation (PFM-PSM) hybrid control for forward operation is proposed and the resonant tank parameters are designed. Finally, the feasibility of the converter is analyzed and validated through simulation and experimental results.

Keywords

Acknowledgement

This work was supported by the Guangdong Basic and Applied Basic Research Foundation, 2022A1515240054.

References

  1. Ning, G., Chen, W., Shu, L., et al.: A hybrid resonant ZVZCS three-level converter for MVDC-connected offshore wind power collection systems. IEEE Trans. Power Electron. 33(8), 6633-6645 (2018) https://doi.org/10.1109/TPEL.2017.2758924
  2. Global Wind Energy Council: Global wind report 2023. https://gwec.net/globalwindreport2023/#download (2023). Accessed 27 March 2023
  3. Chen, W., Huang, A.Q., Li, C., et al.: Analysis and comparison of medium voltage high power DC/DC converters for offshore wind energy systems. IEEE Trans. Power Electron. 28(4), 2014-2023 (2013) https://doi.org/10.1109/TPEL.2012.2215054
  4. Zhao, X., Li, B., Zhang, B., Xu, D.: A high-power step-up DC/DC converter dedicated to DC offshore wind farms. IEEE Trans. Power Electron. 37(1), 65-69 (2022) https://doi.org/10.1109/TPEL.2021.3102228
  5. Zhang, H., Gruson, F., Rodriguez, D.M.F., et al.: Overvoltage limitation method of an offshore wind farm with DC series-parallel collection grid. IEEE Trans. Sustain. Energy. 10(1), 204-213 (2019) https://doi.org/10.1109/TSTE.2018.2829929
  6. Holtsmark, N., Bahirat, H.J., Molinas, M., et al.: An all-DC offshore wind farm with series-connected turbines: an alternative to the classical parallel AC model? IEEE Trans. Ind. Electron. 60(6), 2420-2428 (2013) https://doi.org/10.1109/TIE.2012.2232255
  7. Dincan, C., Kjaer, P., Chen, Y.H., et al.: Analysis of a high-power, resonant DC-DC converter for DC wind turbines. IEEE Trans. Power Electron. 33(9), 7438-7454 (2018) https://doi.org/10.1109/TPEL.2017.2770322
  8. Xiang, X., Zhang, X., Chafey, G.P., et al.: An isolated resonant mode modular converter with fexible modulation and variety of configurations for MVDC application. IEEE Trans. Power Deliv. 33(1), 508-519 (2018) https://doi.org/10.1109/TPWRD.2017.2735634
  9. Krismer, F., Kolar, J.W.: Effciency-optimized high-current dual active bridge converter for automotive applications. IEEE Trans. Ind. Electron. 59(7), 2745-2760 (2012) https://doi.org/10.1109/TIE.2011.2112312
  10. Zong, S., Fan, G., Yang, X.: Double voltage rectification modulation for bidirectional DC/DC resonant converters for wide voltage range operation. IEEE Trans. Power Electron. 34(7), 6510-6521 (2019) https://doi.org/10.1109/TPEL.2018.2875816
  11. Hu, S., Li, X., Bhat, A.K.: Operation of a bidirectional series-resonant converter with minimized tank current and wide ZVS range. IEEE Trans. Power Electron. 34(1), 904-915 (2019) https://doi.org/10.1109/TPEL.2018.2818145
  12. Song, C., Sangwongwanich, A., Yang, Y., et al.: Capacitor voltage balancing for multilevel dual-active-bridge DC-DC converters. IEEE Trans. Ind. Electron. 70(3), 2566-2575 (2023) https://doi.org/10.1109/TIE.2022.3174287
  13. Zhang, Z., Hang, L., Tong, A., et al.: Optimized modulation strategy of NH3L-DAB converter to minimize RMS current for wide voltage range applications. IEEE Trans. Power Electron. 37(7), 7789-7808 (2022) https://doi.org/10.1109/TPEL.2022.3148248
  14. Guan, M.: A series-connected offshore wind farm based on modular dual-active-bridge (DAB) isolated DC-DC converter. IEEE Trans. Energy Convers. 34(3), 1422-1431 (2019) https://doi.org/10.1109/TEC.2019.2918200
  15. Li, T., Parsa, L.: Design, control, and analysis of a fault-tolerant soft-switching DC-DC converter for high-power high-voltage applications. IEEE Trans. Power Electron. 33(2), 1094-1104 (2018) https://doi.org/10.1109/TPEL.2017.2684832
  16. Hu, P., Yin, R., Wei, B., et al.: Modular isolated LLC DC/DC conversion system for offshore wind farm collection and integration. IEEE J. Emerg. Sel. Top. Power Electron 9(6), 6713-6725 (2021) https://doi.org/10.1109/JESTPE.2021.3062677
  17. Ansari, M.S., Shukla, A., Bahirat, H.J.: Analysis and design of MMC-based high-power DC-DC converter with trapezoidal modulation. IEEE Trans. Power Electron. 38(6), 7256-7270 (2023) https://doi.org/10.1109/TPEL.2023.3249463
  18. Liu, J., Zhang, D., Dong, D.: Modeling and control method for a three-level hybrid modular multilevel converter. IEEE Trans. Power Electron. 37(3), 2870-2884 (2022) https://doi.org/10.1109/TPEL.2021.3118425
  19. Kaya, M., Costabeber, A., Watson, A.J., et al.: A push-pull series connected modular multilevel converter for HVdc applications. IEEE Trans. Power Electron. 37(3), 3111-3129 (2022)
  20. Zhang, X., Green, T.C., Junyent-Ferre, A.: A new resonant modular multilevel step-down DC-DC converter with inherent-balancing. IEEE Trans. Power Electron. 30(1), 78-88 (2015) https://doi.org/10.1109/TPEL.2014.2301974
  21. Xiang, X., Gu, Y., Qiao, Y., et al.: Resonant modular multilevel DC-DC converters for both high and low step-ratio connections in MVDC distribution systems. IEEE Trans. Power Electron. 36(7), 7625-7640 (2021) https://doi.org/10.1109/TPEL.2020.3045618
  22. Robinson, J., Jovcic, D., Joos, G.: Analysis and design of an offshore wind farm using a MV DC Grid. IEEE Trans. Power Deliv. 25(4), 2164-2173 (2010) https://doi.org/10.1109/TPWRD.2010.2053390
  23. Jovcic, D.: Bidirectional, high-power DC transformer. IEEE Trans. Power Deliv. 24(4), 2276-2283 (2009) https://doi.org/10.1109/TPWRD.2009.2028600
  24. Hajian, M., Robinson, J., Jovcic, D., et al.: 30 kW, 200 V/900 V, thyristor LCL DC/DC converter laboratory prototype design and testing. IEEE Trans. Power Electron. 29(3), 1094-1102 (2014) https://doi.org/10.1109/TPEL.2013.2260564
  25. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover publications, New York (1974)