Acknowledgement
This work was supported by the Guangdong Basic and Applied Basic Research Foundation, 2022A1515240054.
References
- Ning, G., Chen, W., Shu, L., et al.: A hybrid resonant ZVZCS three-level converter for MVDC-connected offshore wind power collection systems. IEEE Trans. Power Electron. 33(8), 6633-6645 (2018) https://doi.org/10.1109/TPEL.2017.2758924
- Global Wind Energy Council: Global wind report 2023. https://gwec.net/globalwindreport2023/#download (2023). Accessed 27 March 2023
- Chen, W., Huang, A.Q., Li, C., et al.: Analysis and comparison of medium voltage high power DC/DC converters for offshore wind energy systems. IEEE Trans. Power Electron. 28(4), 2014-2023 (2013) https://doi.org/10.1109/TPEL.2012.2215054
- Zhao, X., Li, B., Zhang, B., Xu, D.: A high-power step-up DC/DC converter dedicated to DC offshore wind farms. IEEE Trans. Power Electron. 37(1), 65-69 (2022) https://doi.org/10.1109/TPEL.2021.3102228
- Zhang, H., Gruson, F., Rodriguez, D.M.F., et al.: Overvoltage limitation method of an offshore wind farm with DC series-parallel collection grid. IEEE Trans. Sustain. Energy. 10(1), 204-213 (2019) https://doi.org/10.1109/TSTE.2018.2829929
- Holtsmark, N., Bahirat, H.J., Molinas, M., et al.: An all-DC offshore wind farm with series-connected turbines: an alternative to the classical parallel AC model? IEEE Trans. Ind. Electron. 60(6), 2420-2428 (2013) https://doi.org/10.1109/TIE.2012.2232255
- Dincan, C., Kjaer, P., Chen, Y.H., et al.: Analysis of a high-power, resonant DC-DC converter for DC wind turbines. IEEE Trans. Power Electron. 33(9), 7438-7454 (2018) https://doi.org/10.1109/TPEL.2017.2770322
- Xiang, X., Zhang, X., Chafey, G.P., et al.: An isolated resonant mode modular converter with fexible modulation and variety of configurations for MVDC application. IEEE Trans. Power Deliv. 33(1), 508-519 (2018) https://doi.org/10.1109/TPWRD.2017.2735634
- Krismer, F., Kolar, J.W.: Effciency-optimized high-current dual active bridge converter for automotive applications. IEEE Trans. Ind. Electron. 59(7), 2745-2760 (2012) https://doi.org/10.1109/TIE.2011.2112312
- Zong, S., Fan, G., Yang, X.: Double voltage rectification modulation for bidirectional DC/DC resonant converters for wide voltage range operation. IEEE Trans. Power Electron. 34(7), 6510-6521 (2019) https://doi.org/10.1109/TPEL.2018.2875816
- Hu, S., Li, X., Bhat, A.K.: Operation of a bidirectional series-resonant converter with minimized tank current and wide ZVS range. IEEE Trans. Power Electron. 34(1), 904-915 (2019) https://doi.org/10.1109/TPEL.2018.2818145
- Song, C., Sangwongwanich, A., Yang, Y., et al.: Capacitor voltage balancing for multilevel dual-active-bridge DC-DC converters. IEEE Trans. Ind. Electron. 70(3), 2566-2575 (2023) https://doi.org/10.1109/TIE.2022.3174287
- Zhang, Z., Hang, L., Tong, A., et al.: Optimized modulation strategy of NH3L-DAB converter to minimize RMS current for wide voltage range applications. IEEE Trans. Power Electron. 37(7), 7789-7808 (2022) https://doi.org/10.1109/TPEL.2022.3148248
- Guan, M.: A series-connected offshore wind farm based on modular dual-active-bridge (DAB) isolated DC-DC converter. IEEE Trans. Energy Convers. 34(3), 1422-1431 (2019) https://doi.org/10.1109/TEC.2019.2918200
- Li, T., Parsa, L.: Design, control, and analysis of a fault-tolerant soft-switching DC-DC converter for high-power high-voltage applications. IEEE Trans. Power Electron. 33(2), 1094-1104 (2018) https://doi.org/10.1109/TPEL.2017.2684832
- Hu, P., Yin, R., Wei, B., et al.: Modular isolated LLC DC/DC conversion system for offshore wind farm collection and integration. IEEE J. Emerg. Sel. Top. Power Electron 9(6), 6713-6725 (2021) https://doi.org/10.1109/JESTPE.2021.3062677
- Ansari, M.S., Shukla, A., Bahirat, H.J.: Analysis and design of MMC-based high-power DC-DC converter with trapezoidal modulation. IEEE Trans. Power Electron. 38(6), 7256-7270 (2023) https://doi.org/10.1109/TPEL.2023.3249463
- Liu, J., Zhang, D., Dong, D.: Modeling and control method for a three-level hybrid modular multilevel converter. IEEE Trans. Power Electron. 37(3), 2870-2884 (2022) https://doi.org/10.1109/TPEL.2021.3118425
- Kaya, M., Costabeber, A., Watson, A.J., et al.: A push-pull series connected modular multilevel converter for HVdc applications. IEEE Trans. Power Electron. 37(3), 3111-3129 (2022)
- Zhang, X., Green, T.C., Junyent-Ferre, A.: A new resonant modular multilevel step-down DC-DC converter with inherent-balancing. IEEE Trans. Power Electron. 30(1), 78-88 (2015) https://doi.org/10.1109/TPEL.2014.2301974
- Xiang, X., Gu, Y., Qiao, Y., et al.: Resonant modular multilevel DC-DC converters for both high and low step-ratio connections in MVDC distribution systems. IEEE Trans. Power Electron. 36(7), 7625-7640 (2021) https://doi.org/10.1109/TPEL.2020.3045618
- Robinson, J., Jovcic, D., Joos, G.: Analysis and design of an offshore wind farm using a MV DC Grid. IEEE Trans. Power Deliv. 25(4), 2164-2173 (2010) https://doi.org/10.1109/TPWRD.2010.2053390
- Jovcic, D.: Bidirectional, high-power DC transformer. IEEE Trans. Power Deliv. 24(4), 2276-2283 (2009) https://doi.org/10.1109/TPWRD.2009.2028600
- Hajian, M., Robinson, J., Jovcic, D., et al.: 30 kW, 200 V/900 V, thyristor LCL DC/DC converter laboratory prototype design and testing. IEEE Trans. Power Electron. 29(3), 1094-1102 (2014) https://doi.org/10.1109/TPEL.2013.2260564
- Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover publications, New York (1974)